

www.moveus-project.eu @moveus-project

D3.1 Data models, object models and ontology definition

ICT cloud-based platform and mobility services available,

 universal and safe for all users

Deliverable Id : D3.1

Deliverable Name : Data models, object models

and ontology definition

Status : Ready for quality check

Dissemination Level : PU

Due date of deliverable : M10

Actual submission date : 31/07/2014

Work Package : WP3

Organization name of lead

contractor for this

deliverable :

TEC

Author(s): Sergio Campos, Iraide

Unanue

Partner(s) contributing : ALL

Abstract: This document describes the current outcome of
Task 3.1, which addresses the definition of MoveUs data and
objects model. At this stage, the focus relays on the main
functional modules, supporting the provision of multimodal,
personalized and eco-efficient mobility services.

Data models, object models and

ontology definition

 - 2 -

www.moveus-project.eu

HISTORY

Version Date Modification reason Modified by

0.1 17/06/2014 TOC TEC

0.2 03/07/2014 Registry, PT Operation, Traffic

Management, Feedback

TEC with

contributions

from SOF, TEC

03 10/07/2014 Incentives, Energy Efficiency TEC with

contributions

from SOF,

QRY,CDG, TUT,

TRE

04

18/07/2014 Madrid use-cases analysis, PT

Operation, Journey Planning

update, conclusions

TEC with

contributions

from SICE, EMT

0.5 21/07/2014 Description of model aspects TEC

0.6 23/07/2014 Description of model aspects

(Public Transport)

TEC

0.7 24/07/2014 Description of model aspects

(Traffic Management)

TEC

0.9 11/08/2014 Quality Check ATOS

1.0 11/08/2014 Final Version ATOS

Data models, object models and

ontology definition

 - 3 -

www.moveus-project.eu

Contents

HISTORY .. 2

Contents .. 3

List of Figures ... 5

List of Tables .. 6

List of Abbreviations .. 7

Executive Summary ... 9

1 MoveUs Overview ... 10

2 Methodology .. 11

3 MoveUs data model .. 14

3.1 Functional block User Management ... 14

3.1.1 Existing specifications ... 14

3.1.2 Extensions ... 15

3.2 Functional block Traffic Management .. 20

3.2.1 Existing specifications ... 21

3.2.2 Extensions ... 29

3.3 Public Transport Operation Management ... 38

3.3.1 Existing specifications ... 38

3.3.2 Extensions ... 39

3.4 Functional Traveller Journey Assistance ... 41

3.4.1 Existing specifications ... 42

3.4.2 Extensions ... 44

3.5 Functional block Incentive Management .. 45

3.5.1 Existing specifications ... 47

3.5.2 Extensions ... 47

3.6 Functional block CF/EC Estimation .. 52

3.6.1 Existing specifications ... 53

3.6.2 Extensions ... 53

3.7 Functional block Feedback ... 53

3.7.1 Existing specifications ... 54

3.7.2 Extensions ... 55

3.8 Functional Block Registry... 55

3.8.1 Existing specifications ... 55

3.8.2 Extensions ... 55

Data models, object models and

ontology definition

 - 4 -

www.moveus-project.eu

4 Conclusions ... 58

5 References .. 59

Data models, object models and

ontology definition

 - 5 -

www.moveus-project.eu

List of Figures

Figure 1 MoveUs data model definition process... 11

Figure 2 eMotion status & scope ... 12

Figure 3 In-Time status & scope ... 13

Figure 4 Co-Cities status & scope ... 13

Figure 5 User management extensions (Taxonomy) .. 16

Figure 6 User management extensions (Information) .. 19

Figure 7 User management extensions (Organizations) 20

Figure 8 Road Data Model .. 22

Figure 9 Traffic Related Data .. 23

Figure 10 Measured data publication ... 23

Figure 11 Data values ... 24

Figure 12 Elaborated data publication ... 25

Figure 13 Incidence Related Data ... 26

Figure 14 Dynamic Weather Model ... 27

Figure 13 Dynamic Traffic Event Information ... 28

Figure 14 Dynamic Parking Model ... 29

Figure 15 Intersection information static model (partial view) 30

Figure 16 Intersection data frame ... 31

Figure 17 Approach Object data frame .. 32

Figure 18 Intersection static info global data model .. 33

Figure 19 BT readers (BTFix receptors) static model ... 34

Figure 20 BT readers (BTFix receptors) dynamic model 34

Figure 21 SPAT data model .. 35

Figure 22 SRM data model ... 36

Figure 23 SSM data model ... 36

Figure 24 Dynamic Bike sharing Model .. 38

Figure 25 Public Transport (PT) Service Model .. 39

Figure 26 Carpooling Service Model .. 40

Figure 27 PT Line Management Model ... 41

Figure 28 PT Line Management Model (detail) .. 41

Figure 29 Journey Planning services .. 43

Figure 30 Journey Planning services .. 44

Figure 31 Link between Journeys and Incentives .. 44

Figure 32 Trace Spatio-temporal information ... 45

Figure 33 Incentive Management Functional View ... 45

Figure 34 Incentive Currencies ... 48

Figure 35 Incentive Transactions .. 49

Figure 36 Incentive & Rules ... 50

Figure 37 Coupons & Awards.. 52

Figure 38 Feedback Model ... 55

Figure 39 Registry Model ... 57

Data models, object models and

ontology definition

 - 6 -

www.moveus-project.eu

List of Tables

Table 1 MoveUs users ... 17

Table 2 Incentive data blocks ... 46

Table 3 Measure/Currency Units ... 47

Table 4 Energy Efficiency concepts ... 53

Data models, object models and

ontology definition

 - 7 -

www.moveus-project.eu

List of Abbreviations

<Abbreviation> <Explanation>

App Application

ATOS ATOS SPAIN

BSM Basic Safety Message

BT Bluetooth

BTFix Fix Bluetooth Reader

CF Carbon Footprint

D Deliverable

DATEX2 Standard for ITS on European Roads

EC Energy Consumption

EMT Empresa Municipal de Transportes de Madrid

FCD Floating Car Data

ID Identification

IFOPT Identification of Fixed Objects in Public Transport

ISO International Organization for Standardization

IT Information Technology

ITS Intelligent Transport System

KPI Key Performance Indicator

MAP Map Data

MSG Message

POI Point of Interest

PT Public Transport

RSU Road Side Unit

RT Real Time

SAE SAE international (Society of Automotive Engineers)

SICE Sociedad Ibérica de Construcciones Eléctricas, S.A.

SIRI Service Interface for Real Time Information

Data models, object models and

ontology definition

 - 8 -

www.moveus-project.eu

SOF Softeco Sismat Srl

SPAT Signal Phase And Timing Message

SRM Signal Request Message

SSM Signal Status Message

TECNALIA Tecnalia Research and Innovation

TPEG Transport Protocol Experts Group

TRE Tampereen Kaupunki

TUT Tampere University of Technology

UC Use-case

UML Unified Modelling Language

URL Uniform resource locator (internet)

V2I Vehicle to Infrastructure

V2V Vehicle to Vehicle

VIM Vehicle Interface Module

WP Work Package

Data models, object models and

ontology definition

 - 9 -

www.moveus-project.eu

Executive Summary

WP3 as a whole is concerned with the MoveUs Architecture design and the platform

component specification, to be implemented and deployed in the different city

pilots. Specifically, this deliverable addresses the underlying data and object

models, able to support the information needs of the different processes and

interfaces, with existing data sources, field devices and involved actors.

The methodology to implement this data model, starts eliciting the information

needs by analysing the different use-cases, continues with the validation of

these data requirements, checks their coverage by previous reference data

models (from eMotion, In-time and Co-Cities projects) and finally, fills existing

gaps.

The conceptual MoveUs Data Model has been set up in Unified Modelling Language

(UML), by using the Enterprise Architect CASE Tool. This ensures standard

compliance and service generation support.

The main conclusion remarks that existing models cover a significant portion

of the concepts needed for the storage of information and provision of MoveUs

services. Nevertheless, the most innovative project goals: incentive

management, energy efficiency, services customization and specific

intelligent traffic management have not been previously addressed, so

appropriate extensions have been provided.

Furthermore, the work package scheduling determines an iterative approach,

constituting this document a quite mature version, which will probably need to be

updated to perfectly match the platform and services specification and design,

which will be completed by the end of the 1st project year (M12).

Data models, object models and

ontology definition

 - 10 -

www.moveus-project.eu

1 MoveUs Overview

This Deliverable D3.1 is the first deliverable expected for WP3 – Analysis,

Specification and Design of the MoveUs Architecture and City Services.

The objectives of WP3 are:

 To define the data models relevant for MoveUs operation.

 To define the high-level architecture for the MoveUs Cloud-based platform

and its functional specifications in detail.

 To provide detailed specifications and design for the set of services to be

provided in MoveUs pilots.

 To identify the data security and privacy issues to be taken into account in

the MoveUs architecture and include them in the definition of the platform

and services.

 Develop innovative business models determining the users’ willingness to

pay for the uptake of MoveUs services.

Specifically, Task 3.1 is aimed at collecting and identifying major data protocols and

data and object models relevant for MoveUs. After this analysis versus previously

elicited use-cases, and aligned with architectural and service design, a common

data model is defined.

Data models, object models and

ontology definition

 - 11 -

www.moveus-project.eu

2 Methodology

The data and objects models definition included in this document has been

developed following the next key concepts and methodology:

It is important to remark that one of the main objectives of the MoveUs project is

to develop a data model following the more relevant related standards and previous

European projects. In this way, the data model will not start from the scratch,

reusing previous development and aligning itself with other European initiatives and

standardization activities, and consequently, making the whole project more

interoperable. Another point to stand out is that the model is formally defined in

UML (Unified Modelling Language) by using the EA (Enterprise Architect) tool.

The methodology followed to implement this data model encompasses the following

steps. First of all, an initial identification of MoveUs use cases requirements has

been done in order to detect the information needed in the project. After this

analysis, a complete resource evaluation from previous projects has been done

identifying 3 European projects: eMotion [1], In-Time [2] and Co-Cities [3]. The

next step of this methodology is to clearly identify data requirements for each pilot

according to the use cases, the validation of these data requirements with each

pilot and, finally, to check whether these data requirements are covered by

eMotion, In-Time or Co-Cities data models by filling, eventually, the possible gaps.

The result of this process is the MoveUs data model.

Figure 1 MoveUs data model definition process

Before going deeply into MoveUs data model, a concise description of the identified

European projects is presented in this document:

eMOTION was an initiative co-funded by the European Commission under the

thematic area Sustainable Development, Global Change and Ecosystems of the 6th

Framework Programme for Research and Development, May 2006-July 2008. In

relation to the work presented herein, its main contribution was to develop a data

model (available at [1]) harmonising several international and European standards

along the lines of the ISO 19100 series of Geographic Information standards:

• DATEX 2: individual traffic and a general situation message.

Data models, object models and

ontology definition

 - 12 -

www.moveus-project.eu

• Transmodel: public transport base information.

• SIRI: public transport schedule information.

• IFOPT: fixed transport infrastructures resources and objects.

• TPEG: location referencing, road traffic messages, public transport

information messages and parking facilities.

Figure 2 eMotion status & scope

In-Time project was co-funded by the European Competitiveness and Innovation

Programme, PSP-ICT for adaptive urban transport management infrastructure and

services, starting 1st of April 2009 with duration of 3 years. Based on eMotion, In-

Time data model is already available at [2] covering the following concepts:

• Static road traffic

• Dynamic road traffic & weather

• Points of interest + static and dynamic parking

• Static and dynamic public transport

• Dynamic traffic event

• Static and dynamic flight

• Dynamic multimodal journey planning

Data models, object models and

ontology definition

 - 13 -

www.moveus-project.eu

Figure 3 In-Time status & scope

Co-Cities was an European pilot project aiming to extend and validate existing

mobility services to improve current traffic information management in cities and

urban areas. The novelty about the Co-Cities services was their cooperative feature

permitting the end users to report their feedback to the traffic management

centres. This point is the main contribution to the data model, as it is also based on

In-Time and eMotion projects. While Co-Cities data model is not yet publicly

available at the time of writing the present document, formal contact has been

established between project coordinators in order to facilitate the re-use and

adaptation of this model to MoveUs needs, thanks to the mediation of SOF and

ATOS as partners involved in both projects.

Figure 4 Co-Cities status & scope

Data models, object models and

ontology definition

 - 14 -

www.moveus-project.eu

3 MoveUs data model

Although performed in parallel with task T3.2, the data model is aligned with the

different functional blocks so far identified on the functional architecture. Moreover,

the fact of relying on the FRAME methodology [4] helps to identify high-level

information needs by means of the DFD’s data stores, conceptual repositories of

information supporting selected functionalities.

At this stage of the project, the following functional blocks can be identified:

 User Management

 Traffic Management

 Public Transport Operation Management

 Incentive Management

 CF/EC Estimation

 Feedback

 Register

3.1 Functional block User Management

The requirements in terms of User Management, identity provision and access

rights emerging from the Use Case definition suggest that in principle a basic level

of service could be provided for anonymous users. A user profile, instead, is

required for:

 Personalized access to the mobility services

 Management of the incentives-related operations

The level of complexity of the user profile, associated to the two previous aspects

can vary from a simple pair: userID - password to a complete personal profile made

of a rich set of datatypes for the storage of preferences, habits, personal settings

etc.

3.1.1 Existing specifications

For the present and future needs in MoveUs, the definition a complete user profile,

based on the possibilities identified in the Use Cases is foreseen. This includes also

personal information that is non-mandatory1 in the data model.

1 The feature types introduced in the data model can have attributes with different

multiplicity, identified with square brackets and two identifiers: one for the lower

limit and one for the upper limit of possible instances of the attribute. A multiplicity

of [0..1] for instance indicates that the attribute is not mandatory (zero or one

instances are allowed) like in the case of personal data that are introduced and

defined in the current data model definition but may be not used in the city

services.

Data models, object models and

ontology definition

 - 15 -

www.moveus-project.eu

Considering the general requirements and especially those specifically related to

the incentive management, the analysis of the existing Co-Cities model led to the

decision that a completely new, dedicated package was appropriate.

3.1.2 Extensions

A basic user profile is defined as a super class of the more specific user types.

The basic user profile is defined with attributes necessary for granting secure

access and basic access management operations:

 Activation status

 Logging

 UserID and password recovery

 Role management

Roles can be created to grant different access levels to the city services in addition

to the mechanisms already foreseen for the activation/deactivation of certain

functions.

The main characterization in terms of user types comes from the FRAME-based

methodology adopted for the design of the MoveUs architecture.

Specifically, considering the actors according to the FRAME definitions and the

above mentioned requirements on user management, the following user types and

related features have been identified as the most significant ones:

 Incentive-related User Types (MV_UserType_I)

 Drivers (MV_UserType_D)

 Travellers (MV_UserType_T)

An additional User Type is defined for convenience as MV_UserType_MV. This is the

generic MoveUs User type that can be assigned to both anonymous and registered

users whenever necessary.

The classes for other FRAME user types are defined as placeholders for future use.

All user types and the sub-types defined as enumerations are used as part of the

City Services access profile (see also section Error! Reference source not found.

on the Registry)

Data models, object models and

ontology definition

 - 16 -

www.moveus-project.eu

Figure 5 User management extensions (Taxonomy)

The sub-types attribute for each user type defines the specific actor (user) within a

main user category.

d.e Emergency Vehicle Driver

d.fvd Freight Vehicle Driver

d.hgvd Hazardous Goods Vehicle Driver

d.odsd On-Demand Service Driver

d.pr Private Driver

d.ptd Public Transport Driver

d.tpd Trip Planning Driver

t.c Cyclist

t.cp Car-Pooler

t.odsp On-Demand Service Passenger

t.p Pedestrian

t.ptp Public Transport Passenger

t.ptt Pre-Trip Traveller

Incentives Types 1,2,3,5,6

Other FRAME User Types

Generic Moveus User Type

Incentives Type4

«feature type»

MV_UserBasic

+ UserID: int

+ UserName: string

+ UserPassword: string

+ Status: StatusOfActivationEnum

+ DateOfActivation: DateTime

+ NumberOfFailedAccess: int

+ DateOfLastAccessAttempts: DateTime

+ SecretQuestion: string [0..1]

+ SecretAnswer: string [0..1]

«feature type»

MV_UserType_D

+ SubType: MV_UserTypes_D

«enumeration»

Enumerations::

MV_StatusOfActiv ationEnum

«enum»

 Active

 RegistrationPending

 Suspended

 Inactive

«FeatureType»

MV_UserRole

+ RoleID: int

+ RoleName: string

+ RoleDescription: string

+ Active: boolean

«Enumeration»

Enumerations::

MV_UserTypes_I

«enum»

 i

 i.Type1

 i.Type2

 i.Type3

 i.Type5Ext

 i.Type5MOVEUS

 i.Type6Ext

 i.Type6MOVEUS

«FeatureType»

MV_UserType_ESP

«FeatureType»

MV_UserType_T

+ SubType: MV_UserTypes_T

«FeatureTyp...

MV_UserType_MO

«FeatureTyp...

MV_UserType_O

«FeatureType»

MV_UserType_I

+ SubType: MV_UserTypes_I

«Enumeratio...

Enumerations::

MV_UserTypes_D

«enum»

 d

 d.e

 d.fvd

 d.hgvd

 d.odsd

 d.pr

 d.ptd

 d.tpd

«Enumeratio...

Enumerations::

MV_UserTypes_T

«enum»

 t

 t.c

 t.cp

 t.odsp

 t.p

 t.ptp

 t.ptt

 t.st

 t.vd

«FeatureType»

MV_UserType_MMS

«FeatureType»

MV_UserType_MV

«Enumeration»

Enumerations::

MV_UserTypes_MV

«enum»

 mv

+additionalRole

0..1

Data models, object models and

ontology definition

 - 17 -

www.moveus-project.eu

t.st Static Traveller

t.vd Vehicle Driver
Table 1 MoveUs users

The characterization of MV_UserType_I comes from the definitions given for the

Incentives-related operations2:

 Electronic Wallet Registry: set of payments systems;

 Coupon: a digital code that allow you to get discounts;

 Voucher: a digital code that corresponds to a purchase prepaid;

 Advertisement: a set of information and data that can be used to publish

or link an advertisement;

 Incentives: set of material and virtual objects that help modifying the

mobility behavior to obtain a reduction of driving and/or an use of

alternative modes (i.e. from private vehicle to public transportation, or to a

higher Euro class). Incentives can be also defined as the generic ‘money’

that can be spent to get benefits or coupons.

The user types defined for these objects are:

o Type 1: Entity defining RULES

o Type 2: Entity providing INCENTIVES

o Type 3: Entity where INCENTIVES can be spent, entity providing

awards (benefits that can be obtained with a certain amount of

incentives)

o Type 4: Final users (these are defined in the model as User Types

“D” and “T”)

o Type 5: Entity providing COUPONS. They can be:

 UT5_MOVEUS: MoveUs Internal module usable by other

entities to provide COUPONS.

 UT5_EXT: External entities providing directly COUPONS via a

MoveUs interface available for this purpose.

o Type 6: Entity providing ADVERTISEMENTS

 UT6_MOVEUS: MoveUs Internal module usable by other

entities to provide ADVERTISEMENT

 UT6_EXT: External entities providing directly

ADVERTISEMENT via a MoveUs interface available for this

purpose

From this definition, the different types of users involved in the incentive model can

be clustered into two main categories:

 Final users (private or professional users): users of Type 4

 Organizations: all other types of users

Two main sets of attributes can then be defined and associated to the above

categories. These attributes are identified considering that the “Organization”

object is mainly defined for the purposes of incentives assignment and definition

while the users of type 4 are those who typically access the MoveUs mobility City

Services and can do this in a personalized way thanks to the mobility profile they

have defined and that is constantly updated and refined within the normal service

2 Refer to Deliverable D2.2 [6] for more information on the Incentives model

Data models, object models and

ontology definition

 - 18 -

www.moveus-project.eu

usage. The assumption, given these considerations is that the users of type 4 are

exactly the Drivers and the Travellers, each with a specific characterization:

 Drivers: generally professional drivers that can use a specific profile of

MoveUs services

 Travellers: end users that can use the common MoveUs services and in a

few cases specific parts of them (e.g. the carpooling)

3.1.2.1 User Type 4

The User type 4 is described by a personal profile where all strictly private

information is non-mandatory.

Each main Class (MV_UserType_D and MV_UserType_T) has specific feature types

associated to it that form an extended profile used for the operations in MoveUs.

The Traveller profile comprises:

 Interest

 Mobility-related preferences and parameters

 Settings on the possibility of receiving notifications or get tracked.

 The Carpooling-related profile with the preferences and parameters

necessary for the carpooling service according to the definition given in the

Use Case definition (D2.2) [6]. This data type support the definition and

storage of the carpooler’s profile and can be used eventually at applicative

level to find and match the different trip offerings:

o Indicators about habits of the carpooler (smoker, has animals etc.)

o Temporal thresholds allowed for departure and arrival time

o Spatial thresholds for departure and arrival position

o Size of an ideal corridor around the journey path where possible pick-

ups are allowed

o Preferences about other carpoolers

The Vehicle profile and the Preferences are, instead associated to the personal

profile because these are in common to both Drivers and Travellers.

Data models, object models and

ontology definition

 - 19 -

www.moveus-project.eu

Figure 6 User management extensions (Information)

3.1.2.2 Organizations

The Organization feature type describes the User types that can be classified as

organizations or companies. These are especially user types “I” but can be also

other FRAME actors.

A personal profile is present as an attribute (Contact Person) and is described by

the same feature type that describes the user type 4.

«feature type»

MV_PersonalProfile

+ Name: string [0..1]

+ Surname: string [0..1]

+ Gender: string [0..1]

+ Address: string [0..1]

+ emailAddress: string [0..1]

+ Telephone1: string [0..1]

+ Telephone2: string [0..1]

+ Fax: string [0..1]

MV_UserBasic

«feature type»

MV_UserType_D

+ SubType: MV_UserTypes_D

«feature type»

MV_VehicleProfile

+ Vehicle: MV_VehicleType [0..1]

+ SecondVehicle: MV_VehicleType [0..1]

«enumeration»

CommonTypes::

MV_TransportModes

«enum»

 Car

 Bicycle

 Walking

 PublicTransport

 CarPooling

 CarSharing

«feature type»

MV_TransportRating

+ TransportMode: MV_TransportModes

+ Rating: int

«feature type»

MV_GeneralUserPreferences

+ EnablePushNotifications: boolean

+ EnablePositionTracking: boolean

+ EnableIncentives: boolean

+ EnableCoupons: boolean

«feature type»

MV_VehicleType

+ VehicleType: VehicleTypeEnum

+ Power: short [0..1]

+ CO2emissions: short [0..1]

+ EngineSize: short [0..1]

+ Year: int [0..1]

+ FuelType: MV_FuelTypeEnum

+ EuroClass: string [0..1]

+ OtherEuroClass: string [0..1]
«feature type»

MV_Interests

+ Interest: string

+ rating: int

«FeatureType»

MV_CarPoolingProfile

+ CarpoolerName: string

+ Smoker: boolean [0..1]

+ Animals: boolean [0..1]

+ HasBaggages: boolean [0..1]

+ ArrivalThreshold: int

+ DeparureThreshold: int

+ OriginRadius: int

+ DestinationRadius: int

+ SideArea: int

+ AllowSmoker: MV_UserChoices

+ SameGender: MV_UserChoices

+ AllowBaggages: MV_UserChoices

+ AllowAnimals: MV_UserChoices

«Enumeratio...

Enumerations::

MV_UserChoices

«enum»

 Yes

 No

 Unspecified

«Enumeration»

Enumerations::

MV_FuelTypeEnum

«enum»

 Petrol

 Diesel

 Hybrid

 Electric

 Methane

 LPG

 CNG

 Biofuel

 unknown

 undefined

«Enumeration»

Enumerations::

MV_VehicleTypeEnum

«enum»

 car

 bus

 carWithTrailer

 SUV

 lightVehicle

 goodsVehicle

 motorcycle

 truck

MV_UserBasic

«FeatureType»

MV_UserType_T

+ SubType: MV_UserTypes_T

«FeatureType»

MV_Trav ellerProfile

+ PreferredTransport: MV_TransportRating [0..*]

+ Interests: MV_Interests [0..*]

+hasCarpoolingProfile+hasPersonalProfile

+includes 0..1

+includes

+hasTravellerProfile

+hasPersonalProfile

Data models, object models and

ontology definition

 - 20 -

www.moveus-project.eu

Figure 7 User management extensions (Organizations)

3.2 Functional block Traffic Management

This functional block encompasses the different functionalities to be included to

monitor in real-time the state of roads and public spaces, to detect and manage the

impact of incidents and provide road transport operation improvements in terms of

energy-efficiency and final user safety and satisfaction.

It also establishes appropriate connections with external service and information

providers, both to receive information and request/execute commands.

Several data stores or information repositories have been identified as relevant.

The first distinction can be stablished between static and dynamic (real-time)

information; also the nature of information and further treatment determines the

different data stores.

Urban Road Static Data. This static data covers the actual layout, topology and

configuration of the urban road network, being used as reference by a variety of

functions to monitor, regulate and predict road traffic. It could be also used by

Public Transport Operation System (buses, tram) to define services, routes and

schedules, overlapping both networks and other systems.

Inter-urban Road Static Data. It shall contain the static data for the inter-urban

traffic road network managed by the system, being its meaning analogous to the

«feature type»

MV_Organization

+ OrganizationName: string

+ Address: string [0..1]

+ emailAddress: string [0..1]

+ Telephone1: string [0..1]

+ Telephone2: string [0..1]

+ Fax: string [0..1]

+ WebsiteURL: string [0..1]

+ OrganizationLogoURL: string [0..1]

+ ContactPerson: MV_PersonalProfile [0..1]

+ SocialNetworkInformation: MV_SocialNetworks [0..*]

«enumeration»

Enumerations::

MV_SocialNetworksEnum

«enum»

 Facebook

 Google+

 Twitter

 LinkedIn

 MySpace

 Pinterest

 Formspring

 Flickr

 Instagram

 Netlog

 Other

«feature type»

MV_SocialNetworks

+ SocialNetworkName: MV_SocialNetworksEnum

+ OtherSocialNetworkName: string [0..1]

+ URL: string

«FeatureType»

MV_UserType_I

+ SubType: MV_UserTypes_I

«feature type»

MV_UserBasic

+ UserID: int

+ UserName: string

+ UserPassword: string

+ Status: StatusOfActivationEnum

+ DateOfActivation: DateTime

+ NumberOfFailedAccess: int

+ DateOfLastAccessAttempts: DateTime

+ SecretQuestion: string [0..1]

+ SecretAnswer: string [0..1]

«feature type»

MV_PersonalProfile

+ Name: string [0..1]

+ Surname: string [0..1]

+ Gender: string [0..1]

+ Address: string [0..1]

+ emailAddress: string [0..1]

+ Telephone1: string [0..1]

+ Telephone2: string [0..1]

+ Fax: string [0..1]

«Enumeration»

Enumerations::

MV_UserTypes_I

«enum»

 i

 i.Type1

 i.Type2

 i.Type3

 i.Type5Ext

 i.Type5MOVEUS

 i.Type6Ext

 i.Type6MOVEUS

+hasProfile

Data models, object models and

ontology definition

 - 21 -

www.moveus-project.eu

urban one. In the scope of MoveUs, only segments coming to urban city have

significance (as traffic source or sink).

Urban Traffic Data. It contains traffic flow and other traffic related data for the

urban road network. The data in the store shall be divided into two parts

comprising historic and current data.

Inter-urban Traffic Data. Analogous semantics as previous one, only segments

coming to urban city are relevant.

Incident Data. Collected data about mobility incidences (e.g. traffic, maintenance,

events, environmental). Commonly, the information is captured and refreshed

iteratively, evolving In-Time aspects.

Urban Car Park Data. Static and dynamic data related to the car parks available

in the urban zone: location, availability and occupancy level.

Road Traffic Prediction Data. In MoveUs, these data will be produced from

previously collected data (e.g. historical register), by application of prediction rules

involving relevant parameters (e.g. day of year/week, hour, incidences). Detailed

information needs will be elicited based on WP5 algorithms.

Environmental Data. It integrates data about the environmental conditions within

the geographic area managed by the System.

3.2.1 Existing specifications

Urban Road && Inter-urban Road Static Data

In-Time project already defines a network data model including a location

reference and road network specification, being both specifications general

enough to be applicable to different domains (Figure 8).

Starting with the location reference specification, it can be used to give points

(PointLocationReference), lines (LinearLocationReference) or areas

(ArealocationReference) addressing different geometry types (Figure 8). It is

important to remark that different locations can be grouped by using

LocationReferenceCollection class. For extended details see [2].

In-Time network model defines 2 abstract feature types to represent network

points (nodes, NetNode) and linear areas (links, NetLink). Both features are

NetElements although they differ in their attributes: NetNode has a mandatory

point attribute (GM_Point) representing a point geometry and NetLink are edges in

a network graph with curve attribute (GM_Curve).

Going deeply into the road networks, it is important to point out that In-Time

specification uses concepts from EuroRoads project and defines GML as encoding

for data exchange, based on the ISO TC211 framework of “geo-standards”. This

model is even simpler than EuroRoads model as it is limited to just nodes

(RoadNetNode and links (RoadNetLink) maintaining its attributes e.g. formOfNode

for RoadNetNode describing the network node type, such as junction, roundabout,

Data models, object models and

ontology definition

 - 22 -

www.moveus-project.eu

etc. For ferry (FerryLink) and road (RoadNetLink) links, the class RoadNetLink is

defined. For extended details see [2].

Figure 8 Road Data Model

Urban Traffic Data && Inter- urban Traffic Data && Environmental

Data && Road Traffic Prediction Data

Regarding dynamic traffic information, the In-Time data model provides a specific

package TrafficRelatedInformation, mainly based on DATEX II, that differences

between TrafficRelatedData and TrafficRelatedSituation (that will be analysed later,

in incident data section). TrafficRelatedData manages both sensored data,

comprising measured: volume, density, velocity/speed, individual travel times and

delay time and also derived (processed) data like segment level of service. Any

of these values could represent a real or forecasted measure.

class Simplified Static Road Data Model

LocationReference::LocationReference

LocationReference::

PointLocationReference

LocationReference::

LinearLocationReference

LocationReference::

AreaLocationReference

CommonTypes::

EMotionObject

LocationReference::LocationReferenceCollection

«Enumeration»

LocationReference::

LocationReferenceTypeEnum

 agoraCLocationReference

 alertCLocationReference

 geographicalNameLocationReference

 geometryLocationReference

 linearReferenceLocationReference

 networkNodeLocationReference

 streetAddressLocationReference

 tpegLocationReference

 openLRLocationReference

«FeatureType»
RoadNetwork::RoadNetNode

+/ formOfNode: FormOfNode

«FeatureType»
RoadNetwork::RoadNetLink

«CodeList»

RoadNetwork::FormOfNode

+ enclosedTrafficArea:

+ gradeSeparatedCrossing:

+ junction:

+ pseudoNode:

+ roadEnd:

+ roundabout:

+ trafficSquare:

+ unkown:

«FeatureType»
RoadNetwork::RoadLink

+/ formOfWay: FormOfWay

+/ functionalRoadClass: FunctionalRoadClass

«FeatureType»
RoadNetwork::FerryLink

+/ formOfFerry: FormOfFerry

«CodeList»

RoadNetwork::FormOfWay

+ bicycleRoad:

+ dualCarriageway:

+ enclosedTrafficArea:

+ entranceOrExitCarPark:

+ entranceOrExitService:

+ freeway:

+ motorway:

+ pedestrianZone:

+ roundabout:

+ serviceRoad:

+ singleCarriageway:

+ slipRoad:

+ tractor:

+ trafficSquare:

+ unkown:

+ walkway:

«CodeList»

RoadNetwork::

FunctionalRoadClass

+ eighthClass:

+ fifthClass:

+ firstClass:

+ forthClass:

+ mainRoad:

+ ninethClass:

+ secondClass:

+ seventhClass:

+ sixthClass:

+ thirdClass:

+ unknown:

«CodeList»

RoadNetwork::FormOfFerry

+ shipOrHovercraft:

+ train:

+ unknown:

NetElement

«FeatureType»
AbstractNetwork::NetLink

+/ curve: GM_Curve

NetElement

«FeatureType»
AbstractNetwork::NetNode

+/ point: GM_Point

+locationMember

1..*

Data models, object models and

ontology definition

 - 23 -

www.moveus-project.eu

Figure 9 Traffic Related Data

Measured data are captured, usually periodically, by direct sensors or equipment

(e.g. loops, cameras, weather stations) as traffic values (flow, speed, traffic density

and individual vehicle data (FCD)), environmental/weather values (pollution,

temperature, wind and precipitations), travel times and traffic status.

A measurement data set is represented by the SiteMeasurements class, associated

locally to a site or location (measurementSiteReference) and temporal period

(measurementTimeDefault).

Figure 10 Measured data publication

This class constitutes the basis for the specific types of measures

(TrafficStatusValue, TravelTimeValue, TrafficValue, WeatherValue and

class MeasuredDataPublication

TrafficRelatedInformationFeature

«FeatureType»

MeasuredDataPublication

+ measurementSiteTableReference :CharacterString

EMotionFeature

«FeatureType»

SiteMeasurements

+ measurementSiteReference :CharacterString

+ measurementTimeDefault :DateTime

EMotionFeature

«FeatureType»

MeasuredValue

+ measurementEquipmentTypeUsed :CharacterString [0..1]

EMotionFeature

«FeatureType»

Situation::HeaderInformation

+ areaOfInterest :AreaOfInterestEnum [0..1]

+ confidentiality :ConfidentialityValueEnum

+ informationUsage :InformationUsageEnum [0..*]

+ informationStatus :InformationStatusEnum

+ urgency :UrgencyEnum [0..1]

EMotionObject

LocationCharacteristicsOv erride

+ measurementLanesOverride :LanesEnum [0..1]

+ reversedFlow :Boolean [0..1]

EMotionFeature

«FeatureType»

BasicDataValue::BasicDataValue

+ accuracy :Real [0..1]

+ computationalMethod :ComputationMethodEnum [0..1]

+ fault :Boolean [0..1]

+ faultReason :PT_FreeText [0..1]

+ numberOfIncompleteInputs :Integer [0..1]

+ numberOfInputValuesUsed :Integer [0..1]

+ period :TM_Duration [0..1]

+ smoothingFactor :Real [0..1]

+ standardDeviation :Real [0..1]

+ supplierCalculatedDataQuality :Real [0..1]

+ time :DateTime [0..1]

+ affectedLocation :LocationReference [0..1]

«FeatureType»

BasicDataValue::Trav elTimeValue

+ travelTime :Time [0..1]

+ travelTimeTrendType :TravelTimeTrendTypeEnum [0..1]

+ travelTimeType :TravelTimeTypeEnum [0..1]

+ freeFlowSpeed :Speed [0..1]

+ freeFlowTravelTime :Time [0..1]

+ normallyExpectedTravelTime :Time [0..1]

+ vehicleType :VehicleTypeEnum [0..*]

«FeatureType»

BasicDataValue::TrafficStatusValue

+ trafficStatus :TrafficStatusEnum [0..1]

+ trafficTrendType :TrafficTrendTypeEnum [0..1]

«FeatureType»

BasicDataValue::EnvironmentValue

+has 0..1

+describes
1

+consistsOf

0..1

+describe 1

index+contain 1..* {ordered}

+isPartOf 1

+hasHeaderInformation

0..1

+contain 1..*

+isPartOf 1

Data models, object models and

ontology definition

 - 24 -

www.moveus-project.eu

supplementaryPositionalDescription). The image bellow shows the most relevant

types of measures managed.

Figure 11 Data values

On the other hand, ElaboratedData provides a representation for the main

aggregated measures per road segment and temporal interval (this time at

Traffic Centre level, that is integrating measures from the different deployed

equipment): TravelTimes (elaborated time, free flow time, normally expected

time), Traffic status that identifies five different values (free flow, heavy,

congested, impossible, unknown) and Traffic values: flow, speed, headway,

concentration.

To specify the aggregation criteria, ElaboratedData, defines specific classes:

BasicDataValue (describing accuracy, applied method, standard deviation and

temporal/geographical, data quality), Validity (defining a time period intervals

(Period, TimePeriodOfDay, DayweekMonth) by means of interval data definition,

intersection and union operations) and SourceInformation (identification, location

and mainly reliability). All these characteristics are relevant for the data fusion

algorithm.

class BasicDataValue

EMotionFeature

«FeatureType»

BasicDataValue

+ accuracy :Real [0..1]

+ computationalMethod :ComputationMethodEnum [0..1]

+ fault :Boolean [0..1]

+ faultReason :PT_FreeText [0..1]

+ numberOfIncompleteInputs :Integer [0..1]

+ numberOfInputValuesUsed :Integer [0..1]

+ period :TM_Duration [0..1]

+ smoothingFactor :Real [0..1]

+ standardDeviation :Real [0..1]

+ supplierCalculatedDataQuality :Real [0..1]

+ time :DateTime [0..1]

+ affectedLocation :LocationReference [0..1]

«FeatureType»

TrafficStatusValue

+ trafficStatus :TrafficStatusEnum [0..1]

+ trafficTrendType :TrafficTrendTypeEnum [0..1]

«FeatureType»

Trav elTimeValue

+ travelTime :Time [0..1]

+ travelTimeTrendType :TravelTimeTrendTypeEnum [0..1]

+ travelTimeType :TravelTimeTypeEnum [0..1]

+ freeFlowSpeed :Speed [0..1]

+ freeFlowTravelTime :Time [0..1]

+ normallyExpectedTravelTime :Time [0..1]

+ vehicleType :VehicleTypeEnum [0..*]

EMotionObject

CommonTrafficRelatedTypes::

SupplementaryPositionalDescription

+ carriageway :CarriagewayEnum [0..*]

+ footpath :Boolean [0..1]

+ lanes :LanesEnum [0..*]

+ lengthAffected :Length [0..1]

+ locationDescriptor :LocationDescriptorEnum [0..*]

«FeatureType»

ElaboratedDataPublication::

WeatherRelatedTrafficValue

+ AverageDistanceGap :Length [0..1]

+ AverageTimeGap :Time [0..1]

+ CriticalDensity :Real [0..1]

+ CriticalVelocity :Speed [0..1]

+ MaximumFreeSpeed :Speed [0..1]

+ MeanTravelTime :Time [0..1]

«FeatureType»

TrafficValue::

TrafficValue

«FeatureType»

TrafficValue::

Indiv idualVehicleMeasurements

«DataType»

TrafficValue::

SpeedPercentile

+ threshold :Real

+ value :Speed

«FeatureType»

TrafficValue::

TrafficConcentration

+ concentration :Real [0..1]

+ occupancy :Real [0..1]

«FeatureType»

TrafficValue::TrafficFlow

+ axleFlow :Real [0..1]

+ pCUFlow :Real [0..1]

+ percentageLongVehicles :Percentage [0..1]

+ vehicleFlow :Real [0..1]

«FeatureType»

TrafficValue::TrafficHeadway

+ averageDistanceHeadway :Length [0..1]

+ averageTimeHeadway :Time [0..1]

«FeatureType»

TrafficValue::TrafficSpeed

+ averageVehicleSpeed :Speed [0..1]

«DataType»

TrafficValue::VehicleDetectionTime

+ arrivalTime :DateTime [0..1]

+ exitTime :DateTime [0..1]

+ passageTime :DateTime [0..1]

+ presenceTime :TM_Duration [0..1]

+ timeGap :Time [0..1]

+ timeHeadway :Time [0..1]

«DataType»

TrafficValue::VehicleHeadway

+ distanceGap :Length [0..1]

+ distanceHeadway :Length [0..1]

«DataType»

TrafficValue::VehicleSpeed

+ individualVehicleSpeed :Speed

EMotionObject

VehicleCharacteristics::VehicleCharacteristics

+ fuelType :FuelTypeEnum [0..1]

+ loadType :LoadTypeEnum [0..1]

+ vehicleEquipment :VehicleEquipmentEnum [0..1]

+ vehicleType :VehicleTypeEnum [0..*]

+ vehicleUsage :VehicleUsageEnum [0..1]

«FeatureType»

NonWeatherRelatedEnv ironmentConditions::

PollutionMeasurement

+ pollutantConcentration :PollutantConcentration

+ pollutantType :PollutantTypeEnum

«Enumeration»

NonWeatherRelatedEnv ironmentConditions::

PollutantTypeEnum

Attributes

+ benzeneTolueneXylene :content

+ carbonMonoxide :content

+ lead :content

+ methane :content

+ nitricOxide :content

+ nitrogenDioxide :content

+ nitrogenMonoxide :content

+ nitrogenOxides :content

+ nonMethaneHydrocarbons :content

+ ozone :content

+ particulates10 :content

+ polycyclicAromaticHydrocarbons :content

+ primaryParticulate :content

+ sulphurDioxide :content

+ totalHydrocarbons :content

+ pollen

«FeatureType»

NonWeatherRelatedEnv ironmentConditions::

IonizingRadiationMeasurement

+ ionizingRadiationDosisEquivalent :DoseEquivalent [0..1]

+ ionizingRadiationRate :EnergyDose [0..1]

+ ionizingRadioactivity :Radioactivity [0..1]

«FeatureType»

NonWeatherRelatedEnv ironmentConditions::

NoiseMeasurement

+ noiseMeanLevelValue :SoundPressureLevel [0..1]

+ noisePeekLevelValue :SoundPressureLevel [0..1]

«FeatureType»

EnvironmentValue

Measure

Measures::PollutantConcentration

+ uom :UomPollutantConcentration

UnitOfMeasure

UnitsOfMeasurement::

UomPollutantConcentration

+hasPositionalDescription

0..1
+describesPosition

1

+hasWeatherRelatedTrafficValue

0..1

+describes

1

+speedPercentil 0..1

+describes 1 +hasVehicleDetectionTime

0..1

+detects

1

+hasVehicleHeadway 0..1

+describes

1

+hasVehicleSpeed 0..1

+describes 1

+has 0..1

+characterise

1

+hasIonizingRadiationMeasurement

0..*

+belongsToEnvironmentValue

1

+hasNoiseMeasurement

0..*

+belongsToEnvironmentValue

1

+hasPollutionMeasurement
0..*

+belongsToEnvironmentValue

1

Data models, object models and

ontology definition

 - 25 -

www.moveus-project.eu

Figure 12 Elaborated data publication

Incident Data

Based on identified data requirements, the incident data model already included in

In-Time already covers MoveUs data necessities.

Since eMotion/In-Time information model has been developed following the

encoding rules defined in the ISO 19100 series of international standards, some

changes had been applied to the original DATEX 2 model, mainly of formal nature.

As defined in eMotion and In-Time documentation, the changes refer especially to:

• Stereotypes of the classes,

• Data types of the attributes,

• Addition of role names,

• Addition of a few attributes,

• Variation of the Location Reference and

• Adaptation of enumerations.

The incidents are TrafficRelatedSituation objects having 4 main categories:

• TrafficElement (road or traffic related event).

• An OperatorAction.

• A NonRoadEventInformation.

• Weather and environmental events affecting road users.

This is, TrafficRelatedSituation refers to incidents and accidents, congestions,

weather and environmental events, road works and road closures for specific points

on the road, routes or administrative areas and can contain and be described by

several concepts as shown in the next plots. Each incident or message represents a

SituationRecord. A SituationRecord is one element of a Situation and is

characterised by values at a given time, defining one version of this element. It is

important to remark that a TrafficRelatedSituation is associated with a

class ElaboratedDataPublication

TrafficRelatedInformationFeature

«FeatureType»

ElaboratedDataPublication

+ forecastDefault: Boolean [0..1]

+ periodDefault: Time [0..1]

+ timeDefault: DateTime [0..1]

EMotionFeature

«FeatureType»

Situation::HeaderInformation

+ areaOfInterest: AreaOfInterestEnum [0..1]

+ confidentiality: ConfidentialityValueEnum

+ informationStatus: InformationStatusEnum

+ informationUsage: InformationUsageEnum [0..*]

+ urgency: UrgencyEnum [0..1]

EMotionObject

ReferenceSettings

+ locationSetReference: CharacterString [0..1]

+ trafficStatusDefault: TrafficStatusEnum [0..1]

EMotionFeature

«FeatureType»

ElaboratedData::ElaboratedData

+ forecast: Boolean [0..1]

+has 0..1

+isUsedBy 1

+hasHeaderInformation

0..1

+contains 1..*

+isPartOf 1

Data models, object models and

ontology definition

 - 26 -

www.moveus-project.eu

LocationReference and it should then be always possible to identify the traffic

disturbance on the network.

On the one hand, and as shown in the next plot, activities, accidents, abnormal

traffic states and obstructions (general obstructions, environmental obstructions

and vehicle obstructions) are already covered as different TrafficElements to be

recorded (TrafficRelatedSituationRecorded). On the other hand, the actions or

activities undertaken by the operator (OperatorAction) are also included

distinguishing between maintenance (MaintenanceWorks) and construction

activities (ConstructionWorks). Generally speaking, they are actions implemented

to prevent or help correct dangerous or poor driving conditions, including

maintenance of the road infra-structure.

Figure 13 Incidence Related Data

class Serv ice 6 - Dynamic Road Traffic Information (secondary road)

EMotionFeature

«FeatureType»
Situation::

TrafficRelatedInformationFeature

+ defaultLanguage: CharacterString

+ feedType: CharacterString

+ publicationTime: DateTime

EMotionFeature

«FeatureType»

Situation::InternationalIdentifier

+ country: CountryEnum

+ nationalIdentifierer: CharacterString

«FeatureType»

Situation::SituationPublication

EMotionFeature

«FeatureType»

Situation::Situation

+ generationTime: DateTime

+ overallImpact: OverallImpactEnum [0..1]

+ relatedSituation: CharacterString [0..*]

EMotionFeature

«FeatureType»

Situation::HeaderInformation

+ areaOfInterest: AreaOfInterestEnum [0..1]

+ confidentiality: ConfidentialityValueEnum

+ informationStatus: InformationStatusEnum

+ informationUsage: InformationUsageEnum [0..*]

+ urgency: UrgencyEnum [0..1]

EMotionFeature

«FeatureType»
SituationRecord::SituationRecord

+ creationReference: CharacterString [0..1]

+ creationTime: DateTime

+ endTime: DateTime [0..1]

+ firstSupplierVersionTime: DateTime [0..1]

+ informationUsageOverride: InformationUsageOverrideEnum [0..1]

+ observationTime: DateTime [0..1]

+ probabilityOfOccurrence: ProbabilityOfOccurrenceEnum [0..1]

+ severity: SeverityEnum [0..1]

+ SituationRecordID: Integer

+ version: Integer

+ versionTime: DateTime [0..1]

«FeatureType»

TrafficRelatedSituation::

TrafficRelatedSituationRecord

EMotionObject

CommonTrafficRelatedTypes::Comment

+ comment: PT_FreeText

+ commentDateTime: DateTime [0..1]

EMotionObject

LocationReference::

LocationReference

«FeatureType»
TrafficElement::TrafficElement

«FeatureType»

TrafficElement::AbnormalTraffic

+ abnormalTrafficType: AbnormalTrafficTypeEnum [0..1]

+ numberOfVehiclesWaiting: Integer [0..1]

+ quereLength: Length [0..1]

+ relativeTrafficFlow: RelativeTrafficFlowEnum [0..1]

+ trafficTrendType: TrafficTrendTypeEnum [0..1]

«FeatureType»

TrafficElement::Activ ities

+ authorityOperationType: AuthorityOperationTypeEnum [0..1]

+ disturbanceActivityType: DisturbanceActivityTypeEnum [0..1]

+ publicEventType: PublicEventTypeEnum [0..*]

«FeatureType»

Accident::Accident

+ accidentCause: AccidentCauseEnum [0..1]

+ accidentType: AccidentTypeEnum [1..*]

«FeatureType»
Obstruction::Obstruction

+ numberOfObstructions: Integer [0..1]

«FeatureType»

Obstruction::AnimalPresenceObstruction

+ alive: Boolean [0..1]

+ animalPresenceType: AnimalPresenceTypeEnum

«FeatureType»

Obstruction::VehicleObstruction

+ vehicleObstructionType: VehicleObstructionTypeEnum

«FeatureType»

Obstruction::Env ironmentalObstruction

+ depth: Measure [0..1]

+ environmentalObstructionType: EnvironmentalObstructionTypeEnum

«FeatureType»

Obstruction::GeneralObstruction

+ obstructionType: ObstructionTypeEnum [1..*]

«FeatureType»

Roadworks::ConstructionWorks

+ constructionWorkType: ConstructionWorkTypeEnum [0..1]

«FeatureType»
Roadworks::Roadworks

+ effectOnRoadLayout: EffectOnRoadLayoutEnum [1..*]

+ roadworksDuration: RoadworksDurationEnum [0..1]

+ roadworksScale: RoadworksScaleEnum [0..1]

+ underTraffic: Boolean [0..1]

+ urgentRoadworks: Boolean [0..1]

«FeatureType»

Roadworks::MaintenanceWorks

+ roadMaintenanceType: RoadMaintenanceTypeEnum [1..*]

«FeatureType»
OperatorAction::OperatorAction

+ actionOrigin: OperatorActionOriginEnum [0..1]

+ operatorActionStatus: OperatorActionStatusEnum [0..1]

+ provisional: Boolean [0..1]

+situationLocation1..*

0..1

+comment
0..*

+comments
1

+includesSituationRecord 1..*

+isPartOfSituation 1

+isDescribedBy

1

+describeSituation

1+includesSituation 0..*

+isPartOfSituationPublication
1

+publicationCreator

1

+identifies

1

Data models, object models and

ontology definition

 - 27 -

www.moveus-project.eu

On the other hand, In-Time simplified data model also covers weather and

environmental events affecting road users (RoadWeatherAndEnviromentEvent).

Concretely, it defines road weather events according to a selection of the TMC

Event Code List (next plot).

Figure 14 Dynamic Weather Model

Finally, In-Time data model has an special service so as to included incidences

having no relation with road events (NonRoadEventInformation in next plot) but

which may affect drivers behaviour and therefore the traffic flow: service

disruptions relevant to road users (e.g. petrol shortage or rest area closed),

availability of transit services and information relating to their departures, limiting

to transit services which are of direct relevance to road users (e.g. connecting rail

or ferry service) and car parks.

class Simplied Dynamic Road Weather Model

Service 15 - specific

«FeatureType»
RoadWeatherAndEnvironmentEvents::

RoadWeatherAndEnvironmentEvent

«FeatureType»

RoadWeatherAndEnv ironmentEv ents::RoadWeatherAndEnv ironmentEv entActual

+ RoadWeatherAndEnvironmentEventActualMessage: RoadWeatherAndEnvironmentEventActualTypeEnum

EMotionFeature

«FeatureType»
SituationRecord::SituationRecord

+ creationReference: CharacterString [0..1]

+ creationTime: DateTime

+ endTime: DateTime [0..1]

+ firstSupplierVersionTime: DateTime [0..1]

+ informationUsageOverride: InformationUsageOverrideEnum [0..1]

+ observationTime: DateTime [0..1]

+ probabil ityOfOccurrence: Probabil ityOfOccurrenceEnum [0..1]

+ severity: SeverityEnum [0..1]

+ SituationRecordID: Integer

+ version: Integer

+ versionTime: DateTime [0..1]

«FeatureType»

TrafficRelatedSituation::

TrafficRelatedSituationRecord

EMotionObject

CommonTrafficRelatedTypes::Comment

+ comment: PT_FreeText

+ commentDateTime: DateTime [0..1]

«FeatureType»
TrafficElement::TrafficElement

+comment
0..*

+comments
1

+hasRoadWeatherAndEnvironmentEventActual 0..*

+belongsTo

1

Data models, object models and

ontology definition

 - 28 -

www.moveus-project.eu

Figure 15 Dynamic Traffic Event Information

Urban Car Park / Bike Sharing Data

In-Time simplified data model defines data structures for static and dynamic

information related with car parking (next plot). The ParkingPoints are identified as

PointOfInterest places specifying the location and the category among others

concepts. Each parking has static information as tariffs and a complete description

of its facilities (e.g. toilets for the disabled available, total capacity, user types,

etc.) whereas dynamic information is related to the real time occupancy (e.g. fill

rate, queue time, etc.). It is important to remark, that the CarparkDynamic

information is also linked to the NonRoadEventInformation in the incidents (as seen

in previous section).

class Serv ice 14 - Dynamic Traffic Ev ent Information - PROPOSED

Service 14 - specific

EMotionFeature

«FeatureType»
SituationRecord::SituationRecord

+ creationReference: CharacterString [0..1]

+ creationTime: DateTime

+ endTime: DateTime [0..1]

+ firstSupplierVersionTime: DateTime [0..1]

+ informationUsageOverride: InformationUsageOverrideEnum [0..1]

+ observationTime: DateTime [0..1]

+ probabilityOfOccurrence: ProbabilityOfOccurrenceEnum [0..1]

+ severity: SeverityEnum [0..1]

+ SituationRecordID: Integer

+ version: Integer

+ versionTime: DateTime [0..1]

«FeatureType»

TrafficRelatedSituation::

TrafficRelatedSituationRecord

EMotionObject

CommonTrafficRelatedTypes::Comment

+ comment: PT_FreeText

+ commentDateTime: DateTime [0..1]

EMotionFeature

«FeatureType»

NonRoadEv entInformation::CarParkDynamic

+ carParkState: CarParkStateEnum [0..1]

+ carParkTrend: CarParkTrendEnum [0..1]

+ exitRate: Real [0..1]

+ fi l lRate: Real [0..1]

+ lastUpdate: DateTime [0..1]

+ occupancy: Integer [0..1]

+ occupancyPercentage: Percentage [0..1]

+ queueTime: Integer [0..1]

«FeatureType»
NonRoadEventInformation::

NonRoadEventInformation
«FeatureType»

NonRoadEv entInformation::

ParkingSituation

«FeatureType»

NonRoadEv entInformation::Serv iceDisruption

+ serviceDisruptionType: ServiceDisruptionTypeEnum [1..*]

«FeatureType»

NonRoadEv entInformation::TransitInformation

+ journeyDestination: PT_FreeText [0..1]

+ journeyOrigin: PT_FreeText [0..1]

+ journeyReference: CharacterString [0..1]

+ scheduleDepartureTime: DateTime [0..1]

+ transitServiceInformation: TransitServiceInformationEnum

+ transitServiceType: TransitServiceTypeEnum

+hasDynamic 0..*

+describes 1

+comment
0..*

+comments
1

Data models, object models and

ontology definition

 - 29 -

www.moveus-project.eu

Figure 16 Dynamic Parking Model

3.2.2 Extensions

Urban Road Static Data && Road Static Data

An extension of In-Time data model is needed in order to cover all information

requirements for Madrid use-cases. This extension is mainly related to the necessity

of a deep description of each intersection (number and type of lines, possible

movements, etc.) and the equipment installed around them, concretely Bluetooth

readers.

class Simplified Dynamic Parking Model

GeometryLocationReference::

PointGeometry

LocationReference

LocationReference::

PointLocationReference

EMotionFeature

«FeatureType»

PointOfInterest::PointOfInterest

+ poiId: PoiPoiId

+ poiInformation: PoiInformation

EMotionFeature

«FeatureType»

PointOfInterest::PointOfInterestCategory

+ categoryId: PoiCategoryId

+ categoryInformation: PoiInformation

+ categoryPriority: PoiPriority [0..1]

+ categoryVisibil ity: PoiVisibil ity [0..1]

+ typeOfPoi: TypeOfPoiEnum

«FeatureType»

Parking::ParkingPoint

+ parkingPointId: ParkingPointCode

EMotionFeature

«FeatureType»

PointOfInterest::PointOfInterestEntrance

+ poiEntranceDescription: PT_FreeText [0..1]

+ pointOfInterestEntranceId: PoiPoiEntranceId

EMotionObject

Parking::CarParkBasicData

+ disabledCapacity: NonNegativeInteger

+ disableToiletsAvailible: Boolean

+ methodOfPayment: PKI13MethodOfPayment [0..*]

+ ownerOperator: CharacterString

+ parkingType: PKI02ParkingTypeEnum

+ permittedVehicleTypes: PKI01VehicleTypeEnum

+ pointOfPayment: PointOfPaymentEnum [0..*]

+ toiletsAvailible: Boolean

+ totalCapacity: NonNegativeInteger

+ userTypes: PKI03UserType [0..*]

+ vehicleEntrances: NonNegativeInteger

+ vehicleExits: NonNegativeInteger

«DataType»

Parking::CarParkTariffs

+ dayTypes: PKI20ServiceDayType

+ feeDescription: PT_FreeText

+ feeType: PKI22FeeType

+ lastUpdate: DateTime

+ timePeriodEnd: Time

+ timePeriodStart: TimeEMotionFeature

«FeatureType»

NonRoadEv entInformation::CarParkDynamic

+ carParkState: CarParkStateEnum [0..1]

+ carParkTrend: CarParkTrendEnum [0..1]

+ exitRate: Real [0..1]

+ fi l lRate: Real [0..1]

+ lastUpdate: DateTime [0..1]

+ occupancy: Integer [0..1]

+ occupancyPercentage: Percentage [0..1]

+ queueTime: Integer [0..1]

«DataType»

DataTypes::PoiInformation

+ poiInformationDescription: PT_FreeText [0..1]

+ poiInformationName: PT_FreeText

+ shortName: PT_FreeText [0..1]

«Enumeration»

TPEG-PKI::PKI01VehicleTypeEnum

 unknown

 lightGoodsVehicle

 heavyGoodsVehicle

 pedalCycle

 vehicleWithTrailer

 highSidedVehicle

 minibus

 taxi

 motorcycle

 smallCar

 largeCar

 camperVan

 carWithTrailer

 carWithCaravan

 lightGoodsVehicleWithTrailer

 heavyGoodsVehicleWithTrailer

 motorcycleWithSidecar

 moped

 regularCar

 other

 undefined

«Enumeration»

TPEG-PKI::

PKI02ParkingTypeEnum

 unknown

 openSpace

 multiStorey

 underground

 covered

 nested

 field

 roadSide

 dropOffWithValet

 dropOffMechanical

 highway

 undefined

«Enumeration»

TPEG-PKI::

PKI20Serv iceDayType

 unknown

 monday

 tuesday

 wednesday

 thursday

 friday

 saturday

 sunday

 weekdays

 weekends

 holiday

 publicHoliday

 religiousHoliday

 federalHoliday

 regionalHoliday

 nationalHoliday

 mondayToFriday

 mondayToSaturday

 sundaysAndPublicHolidays

 schoolDays

 everyDay

 undefined

«Enumeration»

TPEG-PKI::

PKI22FeeType

 unknown

 minimum

 maximum

 additional

 seasonTicket

 temporaryPrice

 nightPrice

 dayPrice

 undefined

0..*

+parkingPoint 0..*

1

+tariffs 0..*

+entrances

0..*

1

+parkingPoint1

+parkingStaticData 0..1

+poiCategories

1..*1

+pointProjection

1..* 0..1

+location 0..*

0..1

Data models, object models and

ontology definition

 - 30 -

www.moveus-project.eu

The SAE J2735 “Dedicated short Range Communications Message Set Dictionary”

standard [5] has been identified as starting point for the static and dynamic

information related with intersections. The aim of this standard is to specify all

messages, data frames and data elements used for both Vehicle to Vehicle (V2V)

and Vehicle to Infrastructure (V2I) exchanges.

Based on this standard and taking into account the requirements identified for

Madrid use-cases, a selection of the messages and data frames has been done in

order to cover both, static and dynamic information related with intersections.

There are 4 messages defined in this standard to support intersection mapping and

signal phase and timing data:

 Signal Phase and Timing Message (SPAT): Relates the current

intersection signal light phases [5].

 Map Data (MAP): Relates the Physical Geometry of the intersection [5].

 Signal Request Message (SRM): Requests preemption or priority services

[5].

 Signal Status Messages (SSM): Related to the internal state of the signal

controller [5].

Map Data message has been selected to include the static information related with

intersections while the other 3 messages are going to be used for dynamic

information (next subsection).

The following plot (Figure 17) shows the IntersectionInfo class where a Map Data

message and geographical information (Circle and ValidRegion) are combined in

order to cover Madrid uses cases requirements.

Figure 17 Intersection information static model (partial view)

class J235ALL_v 2 static

«XSDcomplexType»

mapData

«XSDelement»

+ msgID :DSRCmsgID

+ msgCnt :MsgCount

+ name :DescriptiveName [0..1]

+ layerType :LayerType [0..1]

+ layerID :LayerID [0..1]

+ dataParameters :DataParameters [0..1]

+ crc :MsgCRC

+ localMapData :local:MapData [0] A

IntersecctionInfo

- mapData :mapData

- circle :Circle

- area :ValidRegion

«XSDcomplexType»

mapData::intersections

«XSDelement»

+ intersection :Intersection

«XSDcomplexType»

Intersection

«XSDelement»

+ name :DescriptiveName [0..1]

+ id :IntersectionID

+ refPoint :ReferencePoint [0..1]

+ refInterNum :IntersectionID [0..1]

+ orientation :Heading [0..1]

+ laneWidth :LaneWidth [0..1]

+ type :IntersectionStatusObject [0..1]

«XSDcomplexType»

DataParameters

«XSDelement»

+ localDataParameters :local:DataParameters [0]

string

«XSDsimpleType»

DataParameters::geiodUsed

string

«XSDsimpleType»

DataParameters::lastCheckedDate

string

«XSDsimpleType»

processAgency

string

«XSDsimpleType»

processMethod

«XSDcomplexType»

Intersection::approaches

«XSDelement»

+ approache :ApproachObject

«XSDcomplexType»

Intersection::preemptZones

«XSDelement»

+ preemptZone :SignalControlZone

«XSDcomplexType»

Intersection::priorityZones

«XSDelement»

+ priorityZone :SignalControlZone

«XSDcomplexType»

Circle

«XSDelement»

+ center :Position3D

«XSDcomplexType»

ValidRegion

«XSDelement»

+ direction :HeadingSlice

+ extent :Extent [0..1]

«XSDcomplexType»

ValidRegion::area

«XSDelement»

+ shapePointSet :ShapePointSet

+ circle :Circle

«XSDcomplexType»

ShapePointSet

«XSDelement»

+ anchor :Position3D

+ laneWidth :LaneWidth [0..1]

+ nodeList :NodeList

1

0..1

0..1

Data models, object models and

ontology definition

 - 31 -

www.moveus-project.eu

 Circle: to define a circle centered at a given point and extended to the given

radius. It is typically used to describe the location of signs so that the

receiving vehicle can determine if the sign applies to them and their current

path [5].

 ValidRegion is used to describe one or more geographic locations to which

a message (typically road signs or advisories of some sort) is applied or

considered valid [5].

Going deeply into the Map Data message, it contains all unchanging information

of one or more intersections in the intersection data frame. This message, not only

describes the lane geometry paths and the allowed movements in each lane but

also additional information related with barriers, pedestrian walks, etc. is provided.

.

Figure 18 Intersection data frame

A Map Data message can contain a sequence of intersections (intersections

attribute of Intersection type). In this standard, an intersection is a collection of

approaches while an approach (Figure 18) is a collection of related lanes. The

ApproachObject structure (Figure 19) allows arbitrary groupings of lanes being

these lanes both driven vehicle use type lanes as well as other lane types defined

by the standard: “pedestrian” lanes (cross walks) and “special” lanes for shared

lanes, rail track and other multi-modal uses, and “barriers” for various dividers.

Approach lanes are also divided into approach (ingress, incoming) and egress

(outgoing) lanes.

class J235ALL_v 2 static

«XSDcomplexType»

mapData

«XSDelement»

+ msgID :DSRCmsgID

+ msgCnt :MsgCount

+ name :DescriptiveName [0..1]

+ layerType :LayerType [0..1]

+ layerID :LayerID [0..1]

+ dataParameters :DataParameters [0..1]

+ crc :MsgCRC

+ localMapData :local:MapData [0] A

IntersecctionInfo

- mapData :mapData

- circle :Circle

- area :ValidRegion

«XSDcomplexType»

mapData::intersections

«XSDelement»

+ intersection :Intersection

«XSDcomplexType»

Intersection

«XSDelement»

+ name :DescriptiveName [0..1]

+ id :IntersectionID

+ refPoint :ReferencePoint [0..1]

+ refInterNum :IntersectionID [0..1]

+ orientation :Heading [0..1]

+ laneWidth :LaneWidth [0..1]

+ type :IntersectionStatusObject [0..1]

«XSDcomplexType»

DataParameters

«XSDelement»

+ localDataParameters :local:DataParameters [0]

string

«XSDsimpleType»

DataParameters::geiodUsed

string

«XSDsimpleType»

DataParameters::lastCheckedDate

string

«XSDsimpleType»

processAgency

string

«XSDsimpleType»

processMethod

«XSDcomplexType»

Intersection::approaches

«XSDelement»

+ approache :ApproachObject

«XSDcomplexType»

Intersection::preemptZones

«XSDelement»

+ preemptZone :SignalControlZone

«XSDcomplexType»

Intersection::priorityZones

«XSDelement»

+ priorityZone :SignalControlZone

«XSDcomplexType»

Circle

«XSDelement»

+ center :Position3D

«XSDcomplexType»

ValidRegion

«XSDelement»

+ direction :HeadingSlice

+ extent :Extent [0..1]

«XSDcomplexType»

ValidRegion::area

«XSDelement»

+ shapePointSet :ShapePointSet

+ circle :Circle

«XSDcomplexType»

ShapePointSet

«XSDelement»

+ anchor :Position3D

+ laneWidth :LaneWidth [0..1]

+ nodeList :NodeList

1

0..1

0..1

Data models, object models and

ontology definition

 - 32 -

www.moveus-project.eu

Figure 19 Approach Object data frame

As additional attributes in Intersection (Figure 18) the preemptionZones and

priorityZones are defined in order to provide support for priority and preemption

requests at the intersection. These two concepts are used to determine which

specific request to make, allowing the mapping of the intersection geometry into

specific request zones and values (0~7).

The global model of the static information related with intersections is shown in

Figure 20.

For further details see [5].

class J235ALL_v 2 static

«XSDcomplexType»

ApproachObject

«XSDelement»

+ refPoint :ReferencePoint [0..1]

+ laneWidth :LaneWidth [0..1]

+ approach :Approach [0..1]

+ egress :Approach [0..1]

«XSDcomplexType»

Approach

«XSDelement»

+ name :DescriptiveName [0..1]

+ id :ApproachNumber [0..1]

«XSDcomplexType»

Approach::barriers

«XSDelement»

+ barrier :BarrierLane

«XSDcomplexType»

Approach::computedLanes

«XSDelement»

+ computedLane :VehicleComputedLane

«XSDcomplexType»

Approach::crosswalks

«XSDelement»

+ crosswalk :CrosswalkLane

«XSDcomplexType»

Approach::driv ingLanes

«XSDelement»

+ drivingLane :VehicleReferenceLane

«XSDcomplexType»

Approach::trainsAndBuses

«XSDelement»

+ trainsAndBuse :SpecialLane

«XSDcomplexType»

SpecialLane

«XSDelement»

+ laneNumber :LaneNumber

+ laneWidth :LaneWidth [0..1]

+ laneAttributes :SpecialLaneAttributes

+ nodeList :NodeList

+ keepOutList :NodeList [0..1]

+ connectsTo :ConnectsTo [0..1]

«XSDcomplexType»

BarrierLane

«XSDelement»

+ laneNumber :LaneNumber

+ laneWidth :LaneWidth [0..1]

+ barrierAttributes :BarrierAttributes

+ nodeList :NodeList

«XSDcomplexType»

CrosswalkLane

«XSDelement»

+ laneNumber :LaneNumber

+ laneWidth :LaneWidth [0..1]

+ laneAttributes :CrosswalkLaneAttributes

+ nodeList :NodeList

+ keepOutList :NodeList [0..1]

+ connectsTo :ConnectsTo [0..1]

«XSDcomplexType»

VehicleReferenceLane

«XSDelement»

+ laneNumber :LaneNumber

+ laneWidth :LaneWidth [0..1]

+ laneAttributes :VehicleLaneAttributes

+ nodeList :NodeList

+ keepOutList :NodeList [0..1]

+ connectsTo :ConnectsTo [0..1]

«XSDcomplexType»

VehicleComputedLane

«XSDelement»

+ laneNumber :LaneNumber

+ laneWidth :LaneWidth [0..1]

+ laneAttributes :VehicleLaneAttributes [0..1]

+ refLaneNum :LaneNumber

+ lineOffset :DrivenLineOffset

+ keepOutList :NodeList [0..1]

+ connectsTo :ConnectsTo [0..1]

0..1

0..1

0..1

0..1

0..1

Figure 20 Intersection static info global data model

class J235ALL_v 2 static

«XSDcomplexType»

mapData

«XSDelement»

+ msgID :DSRCmsgID

+ msgCnt :MsgCount

+ name :DescriptiveName [0..1]

+ layerType :LayerType [0..1]

+ layerID :LayerID [0..1]

+ dataParameters :DataParameters [0..1]

+ crc :MsgCRC

+ localMapData :local:MapData [0] A

IntersecctionInfo

- mapData :mapData

- circle :Circle

- area :ValidRegion

«XSDcomplexType»

mapData::intersections

«XSDelement»

+ intersection :Intersection

«XSDcomplexType»

Intersection

«XSDelement»

+ name :DescriptiveName [0..1]

+ id :IntersectionID

+ refPoint :ReferencePoint [0..1]

+ refInterNum :IntersectionID [0..1]

+ orientation :Heading [0..1]

+ laneWidth :LaneWidth [0..1]

+ type :IntersectionStatusObject [0..1]

«XSDcomplexType»

DataParameters

«XSDelement»

+ localDataParameters :local:DataParameters [0]

string

«XSDsimpleType»

DataParameters::geiodUsed

string

«XSDsimpleType»

DataParameters::lastCheckedDate

string

«XSDsimpleType»

processAgency

string

«XSDsimpleType»

processMethod

«XSDcomplexType»

Intersection::approaches

«XSDelement»

+ approache :ApproachObject

«XSDcomplexType»

Intersection::preemptZones

«XSDelement»

+ preemptZone :SignalControlZone

«XSDcomplexType»

Intersection::priorityZones

«XSDelement»

+ priorityZone :SignalControlZone

«XSDcomplexType»

ApproachObject

«XSDelement»

+ refPoint :ReferencePoint [0..1]

+ laneWidth :LaneWidth [0..1]

+ approach :Approach [0..1]

+ egress :Approach [0..1]

«XSDcomplexType»

Approach

«XSDelement»

+ name :DescriptiveName [0..1]

+ id :ApproachNumber [0..1]

«XSDcomplexType»

Approach::barriers

«XSDelement»

+ barrier :BarrierLane

«XSDcomplexType»

Approach::computedLanes

«XSDelement»

+ computedLane :VehicleComputedLane

«XSDcomplexType»

Approach::crosswalks

«XSDelement»

+ crosswalk :CrosswalkLane

«XSDcomplexType»

Approach::driv ingLanes

«XSDelement»

+ drivingLane :VehicleReferenceLane

«XSDcomplexType»

Approach::trainsAndBuses

«XSDelement»

+ trainsAndBuse :SpecialLane

«XSDcomplexType»

SpecialLane

«XSDelement»

+ laneNumber :LaneNumber

+ laneWidth :LaneWidth [0..1]

+ laneAttributes :SpecialLaneAttributes

+ nodeList :NodeList

+ keepOutList :NodeList [0..1]

+ connectsTo :ConnectsTo [0..1]

«XSDcomplexType»

BarrierLane

«XSDelement»

+ laneNumber :LaneNumber

+ laneWidth :LaneWidth [0..1]

+ barrierAttributes :BarrierAttributes

+ nodeList :NodeList

«XSDcomplexType»

CrosswalkLane

«XSDelement»

+ laneNumber :LaneNumber

+ laneWidth :LaneWidth [0..1]

+ laneAttributes :CrosswalkLaneAttributes

+ nodeList :NodeList

+ keepOutList :NodeList [0..1]

+ connectsTo :ConnectsTo [0..1]

«XSDcomplexType»

VehicleReferenceLane

«XSDelement»

+ laneNumber :LaneNumber

+ laneWidth :LaneWidth [0..1]

+ laneAttributes :VehicleLaneAttributes

+ nodeList :NodeList

+ keepOutList :NodeList [0..1]

+ connectsTo :ConnectsTo [0..1]

«XSDcomplexType»

Circle

«XSDelement»

+ center :Position3D

«XSDcomplexType»

VehicleComputedLane

«XSDelement»

+ laneNumber :LaneNumber

+ laneWidth :LaneWidth [0..1]

+ laneAttributes :VehicleLaneAttributes [0..1]

+ refLaneNum :LaneNumber

+ lineOffset :DrivenLineOffset

+ keepOutList :NodeList [0..1]

+ connectsTo :ConnectsTo [0..1]

«XSDcomplexType»

ValidRegion

«XSDelement»

+ direction :HeadingSlice

+ extent :Extent [0..1]

«XSDcomplexType»

ValidRegion::area

«XSDelement»

+ shapePointSet :ShapePointSet

+ circle :Circle

«XSDcomplexType»

ShapePointSet

«XSDelement»

+ anchor :Position3D

+ laneWidth :LaneWidth [0..1]

+ nodeList :NodeList

1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

As explained at the beginning of this section, an extension is needed in order to

incorporate the Bluetooth equipment installed in each intersection. The new

BTReader class collects the identifier, the Bluetooth address and the information

needed to determine its position in the intersection.

Figure 21 BT readers (BTFix receptors) static model

Urban Traffic Data && Inter-urban Traffic Data && Environmental

Data && Road Traffic Prediction Data

Analogously to the previous subsection, an extension is needed in order to cover

the information sent by each Bluetooth reader. This information is recorded as an

event (BTDetectionEvent) linking the detected device with the Bluetooth device of

the road infrastructure that is responsible of generating that event (i.e. the

Bluetooth reader).

Figure 22 BT readers (BTFix receptors) dynamic model

As explained in previous subsection, the SAE J2735 has been used as starting point

in order to define the dynamic information related with intersections. Concretely,

these 3 messages have been identified:

 Signal Phase and Timing Message (SPAT): Relates the current

intersection signal light phases [5].

 Signal Request Message (SRM): Requests preemption or priority services

[5].

 Signal Status Messages (SSM): Relates the internal state of the signal

controller [5].

Starting with the message selected for the smart crossing use case from Madrid,

the Signal Phase and Timing Message (SPAT) data model is shown in Figure

23.

class BT

BTReader

- BTId :string

- BTAddress :string

- intersectionID :IntersectionID

- xOffsett :int

- yOffset :int

- circle :Circle

- area :ValidRegion

«XSDcomplexType»

ValidRegion

«XSDelement»

+ direction :HeadingSlice

+ extent :Extent [0..1]

«XSDcomplexTy...

Circle

«XSDelement»

+ center :Position3D

«XSDcomplexType»

ValidRegion::area

«XSDelement»

+ shapePointSet :ShapePointSet

+ circle :Circle

«XSDcomplexType»

ShapePointSet

«XSDelement»

+ anchor :Position3D

+ laneWidth :LaneWidth [0..1]

+ nodeList :NodeList

class Equipment

BTReader

- BTId :string

- BTAddress :string

- IntersectionID :IntersectionID

- xoffset :int

- yoffset :int

- circle :DF circle

- area :DFValidRegion

BTDetectionEv ent

- detectedBTID :string

- timestamp :DateTime

- BTId :string

Data models, object models and

ontology definition

 - 35 -

www.moveus-project.eu

Figure 23 SPAT data model

SPAT is used to convey the current status of a signalized intersection. Along with

the Map Data message (which conveys a full geometric layout of the intersection in

question) the receiver of this message can determine the state of the signal

phasing and when the expected next phase will occur. The SPAT message sends the

current movement state of each active phase in the system as needed (values of

what lights are active and values of for what durations the light is expected to

continue). The state of inactive movements (typically all red) is not normally

transmitted. Movements are mapped to specific lanes and approaches by use of the

lane numbers present in the message. These lane numbers correspond to the

specific lanes described in the MAP message for that intersection. The current signal

pre-emption and priority status values (when present or active) are also sent. [5]

It is important to remark that this message has a sequence of the following

relevant data: intersection identifier (IntersectionID), status of the controller

(IntersectionStatusObject), additionally the number of states to follow (lanesCnt),

each active Movement/lane is given in turn and contains its state, seconds to the

next event, etc. (MovementsStates) and optionally active priority (SignalState) and

preemption (SignalState) state data.

The main part of this data structure consists of a sequence of MovementsStates for

each lane in the intersection. This data frame is used to combine different

information about current signal state of one or more lanes of a common type

(motorized vehicle, pedestrian, train and transit lanes).

For further details see [5].

For the smart prioritization of vehicles used case in Madrid other 2 messages have

been identified: Signal Request Message (SRM) to send the priority request

while the bus is in the control zone and Signal Status Messages (SSM) to reply

to the priority request.

Signal Request Message (SRM) is a message sent by a vehicle to the RSU in a

signalized intersection. It is used for either a priority signal request or a pre-

dfd J235ALL_v 2 SPAT

«XSDcomplexType»

sPAT

«XSDelement»

+ msgID :DSRCmsgID

+ name :DescriptiveName [0..1]

+ id :IntersectionID

+ status :IntersectionStatusObject

+ priority :SignalState [0..1]

+ prempt :SignalState [0..1]

+ localSPAT :local:SPAT [0]

unsignedByte

«XSDsimpleType»

sPAT::lanesCnt

«XSDcomplexType»

sPAT::states

«XSDelement»

+ state :MovementState

«XSDcomplexType»

Mov ementState

«XSDelement»

+ movementName :DescriptiveName [0..1]

+ laneSet :LaneSet

+ currState :SignalLightState [0..1]

+ pedState :PedestrianSignalState [0..1]

+ specialState :SpecialSignalState [0..1]

+ timeToChange :TimeToChange

+ stateConfidence :StateConfidence [0..1]

+ yellState :SignalLightState [0..1]

+ yellPedState :PedestrianSignalState [0..1]

+ yellTimeToChange :TimeToChange [0..1]

+ yellStateConfidence :StateConfidence [0..1]

+ pedDetect :PedestrianDetect [0..1]

+ localMovementState :local:MovementState [0]

unsignedByte

«XSDsimpleType»

Mov ementState::laneCnt

unsignedShort

«XSDsimpleType»

Mov ementState::pedCount

unsignedShort

«XSDsimpleType»

Mov ementState::v ehicleCount

1

0..1

Data models, object models and

ontology definition

 - 36 -

www.moveus-project.eu

emption signal request depending the way the message flag is set. In either case, it

identifies itself (using its VIN or another method supported by the VehicleIdent data

frame), its current speed, heading and location (using the Blob of the BSM), and

makes a specific request for service (Vehicle Request) as well as an anticipated

time of service (a start time and end time in seconds from the present). The

specific request for service is typically based on previously decoding and examining

the list of supported zones for that intersection (sent in the map data messages).

The outcome of the all pending requests to a signal can be found in the Signal

Status Message, and may be reflected in the SPAT message contents if successful

[5].

Figure 24 SRM data model

As shown in Figure 24, the Signal Request Message is a sequence of requests to

the intersection (SignalRequest) mainly containing the intersection identifier, a

cancel flag, the requested action and optional lanes data such as, the time in the

near future when service is requested to start (timeOfService), end of service

(endOfService), additional information of transit events (transitStatus), vehicle

identifier (vehicleVIN) and its current position (vehicleData) and status (status).

For further details see [5].

Signal Status Messages (SSM) is a message sent by an RSU in a signalized

intersection. It is used to relate the current status of the signal and any collection

of pending or active pre-emption or priority events acknowledged by the controller.

The data contained in this message allow other users to determine their "ranking"

for any request they have made as well as to see the currently active events. When

there have been no recently received requests for service messages, this message

may not be sent. The outcome of the all pending requests to a signal can be found

in the Signal Status Message, and the current event may also be reflected in the

SPAT message contents if successful [5].

Figure 25 SSM data model

class J235ALL_v 2 SignalRequest

«XSDcomplexType»

SignalRequest

«XSDelement»

+ id :IntersectionID

+ isCancel :SignalReqScheme [0..1]

+ requestedActon :SignalReqScheme [0..1]

+ inLane :LaneNumber [0..1]

+ outLane :LaneNumber [0..1]

+ type :NTCIPVehicleclass

+ codeWord :CodeWord [0..1]

«XSDcomplexType»

SignalRequestMsg

«XSDelement»

+ msgID :DSRCmsgID

+ msgCnt :MsgCount

+ request :SignalRequest

+ timeOfService :DSignalSeconds [0..1]

+ endOfService :DSignalSeconds [0..1]

+ transitStatus :TransitStatus [0..1]

+ vehicleVIN :VehicleIdent [0..1]

+ vehicleData :BSMblob

+ status :VehicleRequestStatus [0..1]

class J235ALL_v 2 SignalStatus

«XSDcomplexType»

SignalStatusMessage

«XSDelement»

+ msgID :DSRCmsgID

+ msgCnt :MsgCount

+ id :IntersectionID

+ status :IntersectionStatusObject

+ priorityCause :VehicleIdent [0..1]

+ preemptCause :VehicleIdent [0..1]

+ transitStatus :TransitStatus [0..1]

«XSDcomplexType»

SignalStatusMessage::prempt

«XSDelement»

+ prempt-item :SignalState

«XSDcomplexType»

SignalStatusMessage::priority

«XSDelement»

+ priority-item :SignalState

0..1

0..1

Data models, object models and

ontology definition

 - 37 -

www.moveus-project.eu

The SSM mainly includes the information related with general status of each signal

controller (status), an optional attribute covering active priority (priority of

SignalState) and preemption (prempt of SignalState) state data, optional also the

identification of the vehicle asking for priority (priorityCause) or preemption

(preemptCause) and, finally, additional information pertaining to transit evens

(transitStatus).

For further details see [5].

Incident Data

No extension is necessary as In-Time simplified data model already covers all data

requirements.

Urban Car Park Data

No extension is necessary as In-Time simplified data model already covers all data

requirements for static and dynamic information related with car parking. However,

to cover other public transport as bike sharing, car hiring or electric vehicle hiring

and charging, an analogue model is proposed. In the case of bikes, the information

related to bike sharing is kept in an analogous structure, with the following

adaptations: BikeSharingPoints are included as possible PointOfInterest; additional

datatypes BikeUsingTariffs, BikeSharingDynamic and BikeBasicData are included.

For those elements being outdoors, specific attributes of parking places are

removed (e.g. queue estimation, entrances/exit location, type, disabled capability).

Data models, object models and

ontology definition

 - 38 -

www.moveus-project.eu

Figure 26 Dynamic Bike sharing Model

3.3 Public Transport Operation Management

The main objective of this section is to model all the information needed in order to

fulfil MoveUs pilot and use cases requirements in terms of public transport

operation and management. This information covers a wide range of different

concepts such as the definition and planning of different lines or routes or journey

tracking (vehicle of each trip, departure and arrival times, etc.).

3.3.1 Existing specifications

The existing In-Time simplified model (package Dynamic Public transport

Information) covers the main part of MoveUs requirements as it includes the data

models for journeys, service description and information related with stop points.

Each trip or journey is tracked by recording the TargetVehicleJourney, the

information related to that vehicle (TargetVehicleJourneyInfo) and concepts related

with the service and operator. It is important to remark that each trip is also linked

with the Line description (specifying the direction, the line and the name) and the

stop point elements. The stop point description is related to the

timetabledStopVisit; more timetabledStopVisit form the Timetable. The

class MOVEUS Serv ice 18 - Dynamic Bike Pool Information

GeometryLocationReference::

PointGeometry

LocationReference

LocationReference::

PointLocationReference

EMotionFeature

«FeatureType»

PointOfInterest::PointOfInterest

+ poiId :PoiPoiId

+ poiInformation :PoiInformation

EMotionFeature

«FeatureType»

PointOfInterest::PointOfInterestCategory

+ categoryId :PoiCategoryId

+ typeOfPoi :TypeOfPoiEnum

+ categoryInformation :PoiInformation

+ categoryPriority :PoiPriority [0..1]

+ categoryVisibil ity :PoiVisibil ity [0..1]

EMotionFeature

«FeatureType»

PointOfInterest::PointOfInterestEntrance

+ pointOfInterestEntranceId :PoiPoiEntranceId

+ poiEntranceDescription :PT_FreeText [0..1]

«DataType»

DataTypes::PoiInformation

+ poiInformationName :PT_FreeText

+ poiInformationDescription :PT_FreeText [0..1]

+ shortName :PT_FreeText [0..1]

«FeatureType»

BikeSharingPoint

+ BikePointId :BikePointCode

EMotionObject

BikeSharingBasicData

+ methodOfPayment :PKI13MethodOfPayment [0..*]

+ ownerOperator :CharacterString

+ pointOfPayment :PointOfPaymentEnum [0..*]

+ totalCapacity :NonNegativeInteger

+ userTypes :PKI03UserType [0..*]

«DataType»

BikeSharingTariffs

+ dayTypes :PKI20ServiceDayType

+ timePeriodStart :Time

+ timePeriodEnd :Time

+ feeType :PKI22FeeType

+ feeDescription :PT_FreeText

+ lastUpdate :DateTimeEMotionFeature

«FeatureType»

BikeSharingDynamic

+ BickSharingState :BikeSharingStateEnum [0..1]

+ exitRate :Real [0..1]

+ fi l lRate :Real [0..1]

+ lastUpdate :DateTime [0..1]

+ occupancy :Integer [0..1]

+ occupancyPercentage :Percentage [0..1]

+ queueTime :Integer [0..1]

1

+tariffs 0..*

+entrances
0..*

1

+poiCategories

1..*1

+pointProjection

1..* 0..1

+location 0..*

0..1

0..1

+BikeSharingPoint 0..1

+BikeSharingStaticData 0..1

+BikeSharingPoint

1

Data models, object models and

ontology definition

 - 39 -

www.moveus-project.eu

TargetedVehicleJourney is also associated to a TargetedCall with arrival and

departure info and with an association to the stop point sequence description.

Figure 27 Public Transport (PT) Service Model

3.3.2 Extensions

An extension of the data model is operated for Car Pooling Management according

to the requirements emerging from the Use Case definition.

The trips stored as carpooling offerings are defined by the MV_CarPoolingTrips

feature types. Here the same feature types used for Journey Origin and

EMotionFeature

«FeatureType»

Schedules::StopTimetable

+ version: CharacterString

EMotionFeature

«FeatureType»

Schedules::TimetabledStopVisit

+ itemIdentifier: ItemIdentifier [0..1]

+ monitoringRef: StopPointCode

+ recordedAtTime: DateTime

AbstractVehicleJourney

«FeatureType»

Journeys::TargetedVehicleJourney

AbstractCall

«FeatureType»

Calls::TargetedCall

+ aimedHeadwayInterval: TM_PeriodDuration [0..1]

+ timingPoint: Boolean [0..1] = true

«DataType»

Journeys::VehicleJourneyInfo

+ destinationAimedArrivalTime: DateTime [0..1]

+ destinationName: PT_FreeText [0..1]

+ destinationRef: JourneyPlaceCode [0..1]

+ destinationShortName: PT_FreeText [0..1]

+ headwayService: Boolean [0..1] = false

+ journeyNote: PT_FreeText [0..1]

+ originAimdDepartureTime: DateTime [0..1]

+ originName: PT_FreeText [0..1]

+ originRef: JourneyPlaceCode [0..1]

+ originShortName: PT_FreeText [0..1]

+ vehicleJourneyName: PT_FreeText [0..1]

«DataType»

Calls::AimedArriv alInfo

+ aimedArrivalTime: DateTime [0..1]

+ arrivalBoardingActivity: ArrivalActivity [0..1] = alighting

+ arrivalPlatformName: CharacterString [0..1]

«DataType»

Calls::AimedDepartureInfo

+ aimedDepartureTime: DateTime [0..1]

+ departureBoardingActivity: DepartureActivity [0..1] = boarding

+ departurePlatformName: CharacterString [0..1]

«DataType»

Journeys::Serv iceInfo

+ operatorRef: OperatorCode [0..1]

+ productCategoryRef: PTITransportSubModeUnion [0..1]

+ serviceFeatureRef: PTITransportSubModeUnion [0..*]

+ vehicleFeatureRef: PTI23FacilitiesTypeEnum [0..*]

«DataType»

Calls::StopPointInSequence

+ order: Integer [0..1]

+ stopPointName: PT_FreeText [0..1]

+ stopPointRef: StopPointCode

+ visitNumber: Integer [0..1]

Point

«FeatureType»

Serv iceDescription::StopPoint

+ stopPointId: StopPointCode

+ publicCode: PublicCode [0..1]

+ stopPointName: PT_FreeText

+ shortName: PT_FreeText

«DataType»

Journeys::LineIdentity

+ directionRef: DirectionCode

+ lineRef: LineCode

EMotionFeature

«FeatureType»

Serv iceDescription::Line

+ identity: LineCode

+ lineName: CharacterString

EMotionFeature

«FeatureType»

Serv iceDescription::Operator

+ identity: OperatorCode

+ shortName: CharacterString

+ fullName: CharacterString

AbstractCall

«FeatureTyp...

Calls::

EstimatedCall

«DataType»

Calls::CallAlteration

+ cancellation: Boolean [0..1]

+ extraCall: Boolean [0..1]

«DataType»

AdditionalInfo::DisruptionInfo

+ facil ityChange: FacilityChange [0..1]

+ situationRef: SituationCode [0..1]

EMotionFeature

«FeatureType»

SituationRecord::SituationRecord

+ SituationRecordID: Integer

+ version: Integer

+ creationReference: CharacterString [0..1]

+ creationTime: DateTime

+ endTime: DateTime [0..1]

+ observationTime: DateTime [0..1]

+ versionTime: DateTime [0..1]

+ firstSupplierVersionTime: DateTime [0..1]

+ informationUsageOverride: InformationUsageOverrideEnum [0..1]

+ probabilityOfOccurrence: ProbabilityOfOccurrenceEnum [0..1]

+ severity: SeverityEnum [0..1]

+hasServiceInfo 0..1

1

0..1

+situation

0..1

+isCallAlteration 0..1

1

0..*

+parentOperator 1

+hasLineIdentity
0..1

1

0..1

+line 0..1
+isStopPointInSequence 0..1

1

+hasDisruptionInfo

0..1

1

0..1

+stopPoint 0..1

0..1

+monitoringPoint

0..1

0..1

+operator 0..1

+hasAimedDepartureInfo 0..1

1

+hasAimedArrivalInfo 0..1

1

+vehicleJournyInfo 0..1

1

+targetedCall 0..1

+isPartOf 1

+hasTargetedVehicleJourney 0..1

+isPartOf 1

+hasTimetabledStopVisit 0..*

+isPartOf 1

+isStopPointInSequence0..1

1

Data models, object models and

ontology definition

 - 40 -

www.moveus-project.eu

Destinations are used to identify the origin and destination of the carpooling trip

(JP:OriginDestinationRequestType).

Additionally this feature type includes the attributes that define the additional

details of the offering:

 Calendar: set the days of the week and time when the offering is available

 Role: driver, passenger or unspecified

 Visibility: set if the offering is visible or not

 Roundtrip: to specify whether it is a round trip

 Validity: to specify until when the offering is valid

Figure 28 Carpooling Service Model

Other extension needed is related to specific management carried out in the scope

of Madrid use-case (UC1):

On the one hand, a more precise information of each bus line or route is included

by (1) adding headerA and headerB attributes in Line class in order to specify the

starting and ending places, (2) summarizing the temporal information of the

scheduling in the LineTimingDescription class (i.e. maximum and minimum

frequency, temporal information of the first and last service and which days the

service is available) and, finally, (3) defining the geographical stop place sequence

for each line (LineStopSequence and StopPlace).

«FeatureType»

MV_CarPoolingTrips

+ TripID: int

+ UserID: int

+ Origin: JP_OriginDestinationRequestType

+ Destination: JP_OriginDestinationRequestType

+ Calendar: MV_DayAndTimeSlots [1..*]

+ CarPoolerRole: MV_CarPoolerRoleType

+ IsVisible: boolean

+ IsRoundTrip: boolean

+ Notes: string [0..1]

+ Validity: MV_TemporalValidity [0..1]

«Enumeration»

MV_CarPoolerRoleType

«enum»

 Driver

 Passenger

 Unspecified

«feature type»

CommonTypes::

MV_DayAndTimeSlots

+ DayType: MV_DayTypeEnum

+ StartTime: time

+ EndTime: time

«Enumeration»

CommonTypes::

MV_DayTypeEnum

«enum»

 undefined

 monday

 tuesday

 wednesday

 friday

 thursday

 saturday

 weekdays

 wekends

 holidays

 mondayToFriday

 mondayToSaturday

 workingDays

 schoolDays

 sundaysAndHolidays

«feature type»

CommonTypes::

MV_TemporalValidity

+ StartDate: DateTime

+ EndDate: DateTime

«DataType»

ScopingParameters::

JP_OriginDestinationRequestType

+ givenName: CharacterString [0..1]

«FeatureType»

ScopingParameters::

JP_OriginDestinationNode

+ journeyTime: DateTime [0..1]

EMotionFeature

«FeatureType»

ServiceDescription::Place

+ pointProjection: PointLocationReference [0..*]

+ zoneProjection: AreaLocationReference [0..*]

+ linkProjection: LinearLocationReference [0..*]

+ placeId: PlaceId

0..*

+place

+madeUpOf 1..*

Data models, object models and

ontology definition

 - 41 -

www.moveus-project.eu

Figure 29 PT Line Management Model

On the other hand, for the correct development of Madrid use-case (UC1) it is

necessary to incorporate more detailed information of each trip (Figure 30). With

that objective, the following attributes have been incorporate to the already defined

VehiculeJourneyInfo class: dayType, expedition (theoretical or real vehicle

number), directionRef (journey direction), trip (theoretical or real journey number),

originDepartureTime and destinationArrivalTime.

Figure 30 PT Line Management Model (detail)

3.4 Functional Traveller Journey Assistance

This functional area enables multi-modal information provision, journey planning,

and on-trip trace and support.

class Simplified Dynamic Public Transport Model

«DataType»

Journeys::LineIdentity

+ directionRef :DirectionCode

+ lineRef :LineCode

EMotionFeature

«FeatureType»

Serv iceDescription::Line

+ identity :LineCode

+ lineName :CharacterString

- headerA :PT_FreeText

- headerB :PT_FreeText

«DataType»

LineTimingDescription

- startTime :time

- stopTime :time

- minFrequency :int

- maxFrequency :int

- dayTypes :PTI34ServiceDayTypeEnum

LineStopPlaceSequence

- directionRef :DirectionCode

- long :long

- lat :long

- type :PTI15RoutePointTypeEnum

- distance :int

AbstractStopPlaceElement

«FeatureType»

StopPlace::StopPlace

+ stopPlaceId :StopPlaceId

+ publicCode :PublicCode [0..1]

+ shortName :PT_FreeText [0..1]

+ stopPlaceName :PT_FreeText [0..1]

+ stopPlaceType :StopPlaceTypeEnum [0..1]

+ parentPlaceRef :StopPlaceId [0..1]

+ weighting :InterchangeWeightingEnum

0..1

+line 0..1

1..*1

1..*

1..*

1

1

class Simplified Dynamic Public Transport Model

«DataType»

Journeys::VehicleJourneyInfo

+ destinationAimedArrivalTime :DateTime [0..1]

+ destinationName :PT_FreeText [0..1]

+ destinationRef :JourneyPlaceCode [0..1]

+ destinationShortName :PT_FreeText [0..1]

+ headwayService :Boolean [0..1] = false

+ journeyNote :PT_FreeText [0..1]

+ originAimdDepartureTime :DateTime [0..1]

+ originName :PT_FreeText [0..1]

+ originRef :JourneyPlaceCode [0..1]

+ originShortName :PT_FreeText [0..1]

+ vehicleJourneyName :PT_FreeText [0..1]

- dayType :PTI34ServiceDayTypeEnum

- expedition :string

- trip :string

- destinationArrivalTime :DateTime

- originDepartureTime :DateTime

- directionRef :DirectionCode

Data models, object models and

ontology definition

 - 42 -

www.moveus-project.eu

The relevant data blocks are the following:

Private Trip Plan Data. The result of the trip planning process is used along the

on-trip phase, as a reference to identify perturbations affecting estimation times

and travel viability.

Road Trip Planning Data. It contains information about the road network and the

traffic conditions within for use in planning trips. It shall be possible to integrate

current and predicted data for different date/time combinations. It is mainly used

for planning.

PT Trip Planning Data. Analogous to Road Trip Planning Data, it integrates the

information about the services provided by the Public Transport operator plus the

fares that will be charged; and it shall be for use in planning trips.

Travel Information Data. Real-time updated network information.

General Trip Preferences (GTP) Data. Contains the personalised data needed to

support the Traveller during all his/her trips, from the trip planning, trip execution

and finally, being updated once finalized.

Personal Mobility Data. Repository of historical information, where resides all the

information sent by the application track capture module. This information is used

in the queries associated with mobility analysis.

3.4.1 Existing specifications

Trip Planning Data (Personal/Road and Public Transport). The next plot is

extracted from eMotion data model and represents a complete single-multimodal

journey planning. This single-multimodal journey planning covers the following

options:

• Dynamic Road Traffic Routing Information.

• Dynamic Public Transport Journey Routing.

• Dynamic Walking Planning.

• Dynamic Cycling Planning.

• Comparative Dynamic Multi Modal Journey Planning.

JP_Journey class describes a journey and it is made up by several JP_Legs (a leg is

a structure that is used to define each single journey. A journey can be made of

several legs). There are 4 leg types:

• Timed Leg: a leg that has specific timing points associated to a timetable

e.g. Public Transport.

• Frequency Leg: a leg that runs at specified frequencies.

• Continuous Leg: a continuous leg does not have a specific timing or

frequency and is suitable for legs not covered by public transport, e.g. it can

be used for car or walk legs.

• Interchange Leg: interchange legs are typically used for walking trips for

interchange purposes. They have an origin and a destination and are

described with a navigation path.

Another important concept to point out from this data model is that each JP_Leg

can include information on Tracking&mapping (JP_LegTrack).

Data models, object models and

ontology definition

 - 43 -

www.moveus-project.eu

Figure 31 Journey Planning services

For deeper detail of classes and attributes needed for each leg see In-Time data

model, which includes information regarding messages, service origin, etc.

class Interface Response

«DataType»

JourneyPlanningServ ice::

JS_JourneysResponse

+ message: JS_MessageType [0..*]

+ requestId: CharacterString

«interface»

JourneyPlanningServ ice::JS_JourneyPlanningServ ice

+ adjacentRegionExchangePointsRequest(AdministrativeAreaCode_Substitute) : JS_AdjacentRegionExchangePointsResponse

+ exchangePointsRequest(StopPointCode_Substitute) : JS_ExchangePointsResponse

+ getCapabilities(CharacterString) : JS_JourneyPlanningCapabilities

+ journeyRequest(JS_JourneysResponse) : JS_JourneysResponse

+ pointsRequest(PointsRequestRequestTypes) : JS_PointsResponse

«BasicType»

SubstitutionTypes::

JP_Journeys_Substitute

«FeatureTyp...

JourneyPlanning::

JP_Journeys

EMotionFeature

«FeatureTyp...

JourneyPlanning::

JP_Journey

«FeatureType»

Legs::JP_Leg

+ legCost: Real [0..1]

+ requestId: CharacterString

«FeatureType»

Legs::

JP_InterchangeLeg

«FeatureTyp...

Legs::

JP_FrequencyLeg

«FeatureTyp...

Legs::

JP_TimedLeg

«FeatureType»

Legs::

JP_ContinuousLeg

EMotionFeature

«FeatureType»

Legs::JP_InterchangeLegType

+ interchangeLegDestination: JP_ReturnedNode

+ interchangeLegOrigin: JP_ReturnedNode

+ interchangeSchematics: CharacterString [0..1]

+ map: JP_Map [0..1]

+ notes: CharacterString

«DataType»

Legs::

JP_InterchangeLegType::

JP_InterchangePath

«DataType»

Legs::JP_ReturnedNode

+ ETA: DateTime [0..1]

+ timingInformationPoint: Boolean

EMotionFeature

«FeatureType»
ServiceDescription::Place

+ linkProjection: LinearLocationReference [0..*]

+ placeId: PlaceId

+ pointProjection: PointLocationReference [0..*]

+ zoneProjection: AreaLocationReference [0..*]

«FeatureType»

ScopingParameters::

JP_OriginDestinationNode

+ journeyTime: DateTime [0..1]

«FeatureType»

ScopingParameters::JP_Seed

+ numChanges: Integer [0..1]

+ service: Service

+ startTime: DateTime [0..1]

+ walkDistance: Integer [0..1]

«FeatureType»

Nav igation::PlaceInSequence

+ label: PT_FreeText

+ order: NonNegativeInteger

+ placeInSequenceId: Id

+ placeRef: PlaceId

EMotionFeature

«FeatureType»

Legs::JP_ContinuousLegType

+ CO2emission: Real [0..1]

+ fuelConsumption: Real [0..1]

+ mode: AccessModesEnum

+ notes: CharacterString [0..1]

+ typicalDuration: JP_DurationWindowGroup

«DataType»

Legs::JP_ContinuousLegType::

JP_ContinuousLegServ iceDestination

«enumeration»

Enumerations::

AccessModesEnum

 foot

 bicycle

 car

 taxi

 shuttle

 DRT

 metro

 train

 bus

«FeatureType»

Nav igation::Nav igationPath

+ accessibil ity: Accessibil ityAssessment [0..1]

+ navigationPathId: Id [0..1]

+ navigationPathName: PT_FreeText [0..1]

+ navigationType: NavigationType [0..1]

LocationReference::

LinearLocationReference

LocationReference::

LinearLocationReferenceCollection

EMotionObject

LocationReference::

LocationReference

GeometryLocationReference::

PointGeometry

LocationReference::

PointLocationReference

OpenLRLocationReference::

OpenLRPoint

+ location: LocationReference

«FeatureType»

AdditionalScopingParameters::

JP_Via_Node

+ duration: Time [0..1]

+ exclModes: JP_Modes [0..1]

+ inclModes: JP_Modes [0..1]

«FeatureType»

AdditionalScopingParameters::

JP_NotVia_Node

«DataType»

Legs::LegServ iceInfo

+ direction: char

+ fromNode: string

+ lineIdentifier: string

+ toNode: string

+ towards: string

0..*

+place

0..*

+viaPlace

+linearLocationReferenceMember 1..*

+serviceInfo

0..1

+endsIn 0..1

+zones 0..*1

0..*

+notViaPlace

+uses 0..1

+madeUpOf 0..1

0..*

+returnedPlace

+definedBy 1..*

+endedAs

+describedAs

+continuousLegInformation
+interchangeLegInformation

+madeUpOf 1..*

+madeUpOf

1..*

0..*

+place 1

Data models, object models and

ontology definition

 - 44 -

www.moveus-project.eu

Personal Mobility Data

As mentioned in the previous section, each JP_Leg can include information on

Tracking&mapping (JP_LegTrack). The TrackingAndMapping contains data types

suitable for Mapping and Tracking purposes. Objects of type JP_Tracks include a

JP_Map and may include instructions. The next plot is extracted from eMotion data

model.

Figure 32 Journey Planning services

3.4.2 Extensions

An additional extension will be considered for MoveUs, associating an incentive

(MV_incentive, see section 3.5) and recording the incentive associated with each

journey. The incentive calculation is based on a set of rules, applicable for a specific

temporal period and location, with user behaviour as parameter. Here, a journey

plan (JP_Journey), is defined as a sequence of transport modes in a time slot.

 Figure 33 Link between Journeys and Incentives

class TrackingAndMapping

«DataType»

JP_Map

+ renderedMapURL: CharacterString [0..1]

LocationReference

LocationReference::

PointLocationReference

«DataType»

JP_Feature

+ absoluteBearing: Angle [0..1]

+ distance: Distance [0..1]

+ featureDescription: CharacterString [0..1]

+ onwardName: CharacterString [0..1]

+ relativeBearing: JP_RelativeBearing

+ roadNumber: CharacterString [0..1]

NetNode

«FeatureType»
RoadNetwork::RoadNetNode

+/ formOfNode: FormOfNode

«DataType»

JP_TrackInstructions

+ summary: CharacterString

«DataType»

JP_LegTrack

+ polyline: string

+ totalDistance: Distance

«DataType»

JP_Track

+ mapSystemReference: JP_MapSystemReference

«DataType»

JP_MapSystemReference

«Enumeration»

JP_Relativ eBearing

 left

 right

 straightAhead

 uTurn

 unknown

+featureTypeDefinedAs

+instructionsGivenBy

0..1
+including

+madeUpOf 1..*

+mapping 2..*

{ordered}

+includes 1..*

class Interface Response

«BasicType»

SubstitutionTypes::

JP_Journeys_Substitute

«FeatureTy...

JourneyPlanning::

JP_Journeys

EMotionFeature

«FeatureTy...

JourneyPlanning::

JP_Journey

«FeatureType»

MV_incentive

- ID :int

- Name :string

- Description :string [0..1]

- IncentiveCurrency :MV_IncentiveCurrency

+madeUpOf

1..*

assocIncentive

Data models, object models and

ontology definition

 - 45 -

www.moveus-project.eu

Personal Mobility Data

An additional attribute timestamp will be added to keep the specific timing points

associated to the different JP_LegTracks that compose the trip and allowing spatio-

temporal analysis of the mobility patterns.

Figure 34 Trace Spatio-temporal information

3.5 Functional block Incentive Management

The component diagram depicting the organization and functional view on the

Incentives Management is included as a reference.

Figure 35 Incentive Management Functional View

class TrackingAndMapping

«DataType»

JP_LegTrack

+ polyline :string

- timeStamp :DateTime

+ totalDistance :Distance

MOVEUS Database MOVEUS Modules

Coupons

Electronic Wallet

Incentiv es Balance

UT5

«manager»

Information on

Coupons

«manager»

Request of Coupons

UT4

«manager»

Request of Awards

«manager»

Information on

Incentiv es &

Awards

Incentiv es

«manager»

Voucher Management

UT3

UT2

UT1

Users

Rules

«manager»

Balance

Management

Awards Catalogue

UT5_Ext

UT5_MOVEUS

Vouchers

Adv ertisement

UT6

UT6_Ext

UT6_MOVEUS

Adv ertisement

publishing

provide

expendableAt

getInformationOnIncentives

voucherIssue

storeIssuedVoucher

register

notify

register

requestInformationOnAwards

define

register

appliesTo

updateBalance

getInformationOnAwards

update

register

accessElectronicWalletServices

register

provide

use

+updateCouponsAvailabil ity

use

requestVoucherIssue

notify

getCouponsDealsInformation

requestCouponDeal

requestCouponsDealsInformation

requestAward

updateOnBehavior

requestInformationOnIncentivesOrAwards

use

requestVoucherIssue

provide

getAdvertisementData

sendAdvertisementData

Data models, object models and

ontology definition

 - 46 -

www.moveus-project.eu

A complete description of the Incentives model can be found in Deliverable D2.2

[6].

In chapter 3.1 of the present Deliverable, the Data model supporting the User

Management according to the requirements of the Incentives model

is described.

In order to define the Data Model supporting the data storages involved in the

Incentives management, according to the model definition and as depicted in the

previous diagram, the following high-level view is provided:

Table 2 Incentive data blocks

Users: Registry of users described by:

 ID

 User Type

 Name

 Etc.

Plus User-specific attributes

Electronic Wallet Information and URL of available

payment services the user can be

redirected to. Described by:

 Description

 URL

 Etc.

Advertisement Data on Advertisement. Described by:

 Description

 Url of the advertisement

 Etc.

Coupons Data on Coupons. Described by:

 Description

 Validity (Geographical, Dates)

 Cost

 Etc.

Incentives Data on incentives. Described by:

 Description

 Type

 Unit of measure

 Etc.

User Balance Amount of incentives units (credits

and coins) gained by the users.

Described by:

 Incentive type

 Total

Data models, object models and

ontology definition

 - 47 -

www.moveus-project.eu

 Etc.

Awards Catalogue Benefits, awards, rewards that can be

obtained by giving a certain amount of

credits or coins. Described by:

 Description

 Cost

 Validity

 Etc.

Rules Data that define the measure/rule for

each incentive. Described by:

 Description

 Validity (Dates, Geographic

area etc.)

 Beneficiaries (Type 4 users)

 etc.

Vouchers Contains the historical data on Issued

Vouchers.

The incentives-related data model is described by focusing on three aspects that

together form the overall Incentives-related package:

 Introduction of incentive currencies

 Assignment of incentives to the user

 Definition of incentives and rules

 Awards, coupons, advertisement

3.5.1 Existing specifications

The incentive schema defined within MoveUs is supported by a specific and

dedicated Data Model which needs to be defined completely. No existing parts of

the In-Time/Co-Cities Data Model is then re-used.

3.5.2 Extensions

3.5.2.1 Incentive currencies

The basic types of incentives can be identified with three base units of measure or

currencies:

Table 3 Measure/Currency Units

Unit of measure /

Currency

Type of incentive

CREDIT Incentives that are calculated from Energy Efficient

Behaviour

Data models, object models and

ontology definition

 - 48 -

www.moveus-project.eu

M_COIN (MoveUs Coins) Incentives that can be spent in general at more

UT3s associated to MoveUs

B_COIN (Bonded Coin) Incentives that can be spent only at one specific

UT3

In order to allow a higher flexibility, an additional MV_IncentiveCurrency extends

the base currency by adding the same features to it:

 A name

 A monetary value

 A temporal and spatial validity

The extension allows the management of different types of incentives (e.g.

incentives provided by different organizations) either within one single City or from

one City to another.

MV_IncentiveCurrency becomes the unit of measure for:

 Incentives storage in the user balance,

 Award assignment,

 Coupon issuing.

Figure 36 Incentive Currencies

3.5.2.2 Assignment of incentives

The feature type MV_IncentiveBalance is defined to store the amount of incentives.

The assumption is that only the user type T (Traveller) can own zero or more

incentives balances. Each balance features a specific incentive currency.

The Total amount of incentives is an attribute of the MV_IncentiveBalance class

while the single transactions are described with the MV_IncentiveTransactions

feature type.

«feature type»

MV_Incentiv eCurrency

+ ID: int

+ BasicCurrency: MV_IncentiveTypeEnum

+ CurrencyCustomName: string

+ MonetaryValueOfCurrency: short

+ TimeValidity: TemporalValidity [0..1]

+ GeographicValidity: MV_GeographicArea

«enumeration»

Enumerations::

MV_Incentiv eTypeEnum

«enum»

 Credits

 M_Coin

 B_Coin

«feature type»

CommonTypes::

MV_TemporalValidity

+ StartDate: DateTime

+ EndDate: DateTime

«feature type»

CommonTypes::MV_GeographicArea

+ ID: int

+ LocationName: string

+ BBox: PointLocationReference [1..*]

+ Center: PointLocationReference

GeometryLocationReference::

PointGeometry

LocationReference

LocationReference::

PointLocationReference

Data models, object models and

ontology definition

 - 49 -

www.moveus-project.eu

 Figure 37 Incentive Transactions

3.5.2.3 Incentives and rules

An incentive is defined with a specific Incentive Currency and follows one or more

rules that define how the incentives can be gained by the user.

The rule is composed by a super class with a base profile including a temporal and

spatial validity. The sub-classes define the sub-rules, namely the set of attributes

necessary to define how many incentives are rewarded for a specific situation or

behaviour (whose relevant attributes are present in the sub-class to support the

related city service functionalities). Two sub-rules are defined at the present stage:

 Smart mobility rule: defines how many incentives can be gained by

covering a distance with certain modes of transport and in specific timeslots.

 Feedback rule: defines how many incentives can be gained by providing a

number of feedbacks of a certain type.

«feature type»

MV_Incentiv eBalance

+ ID: int

+ CurrencyType: MV_IncentiveCurrency

+ Total: short

+ LastUpdate: DateTime

«feature type»

MV_Incentiv eTransactions

+ OperationID: int

+ DateOfTransaction: DateTime

+ AmountOfIncentives: short

+ TypeOfTransaction: MV_TypeOfTransactionEnum

+ Description: string

+ OperatedByUserID: int

«enumeration»

Enumerations::

MV_TypeOfTransactionEnum

«enum»

 Gain

 VoucherRequest

 AwardRequest

 Initialization

 Correction

 Bonus

 Penalty

 Other

MV_UserBasic

«FeatureType»

User Management::

MV_UserType_T

+ SubType: MV_UserTypes_T

+detailedWith 0..*

+asseciatedTo

+assignedTo+owns

0..*

Data models, object models and

ontology definition

 - 50 -

www.moveus-project.eu

Figure 38 Incentive & Rules

3.5.2.4 Coupons, awards, vouchers, electronic wallet service and

advertisement

The coupons are described by a complex feature (MV_coupons) that can be used to

describe most aspects of the object associated to the coupon. An URL of a detail

page is present to link the coupon to the organization that provides it.

The MV_Award describe the single entry of a catalogue of awards. A single award

applies to one or more incentives.

«feature type»

MV_Incentiv e

+ ID: int

+ Name: string

+ Description: string [0..1]

+ IncentiveCurrency: MV_IncentiveCurrency

«feature type»

MV_I_Rule_Basic

+ ID: int

+ Name: string

+ Description: string

+ GeographicValidity: MV_SpatialExtent [0..*]

+ TimeValidity: TemporalValidity

«feature type»

MV_I_Rule_SmartMobility

+ Reward: short

+ Distance: short

+ ModeOfTransport: MV_TransportModes

+ TimeSlots: DayAndTimeSlots [1..*]

«feature type»

CommonTypes::

MV_DayAndTimeSlots

+ DayType: MV_DayTypeEnum

+ StartTime: time

+ EndTime: time

«Enumeration»

CommonTypes::

MV_DayTypeEnum

«enum»

 undefined

 monday

 tuesday

 wednesday

 friday

 thursday

 saturday

 weekdays

 wekends

 holidays

 mondayToFriday

 mondayToSaturday

 workingDays

 schoolDays

 sundaysAndHolidays

«FeatureType»

MV_I_Rule_FeedbackProv ision

+ Reward: short

+ TypeOfFeedback: int

+ NumberOfFeedbacks: int

+follow 1..*

+appliesTo 0..*

Data models, object models and

ontology definition

 - 51 -

www.moveus-project.eu

Both Awards and Coupons can be obtained and paid by means of an Incentive

Payment Type. The feature type MV_IncentivePaymentType extends the concept of

Incentive Currency previously introduced by adding a monetary tradeoff. This

tradeoff expresses the percentage that could be applied to pay an award or a

coupon partially in incentives and partially in real money.

Example:

An instance of IncentiveCurrency named “CustomCoin” is of type “B_COIN”,

and each coin has a value of 1 euro.

An instance of IncentivePaymentType has the value of CustomCoin and

additionally has a monetary tradeoff of the 50%.

An award of value = 100Euro can be then obtained with 100 CustomCoin or

with 50 CustomCoin + 50 Euros.

MV_Advertisement is a basic feature type supporting the Advertisement object.

MV_Vouchers is used to store the information of the Vouchers that have been

issued and can be used for historical purposes or for retrieving the details of the

Voucher (for example at the moment of use of the voucher).

The Electronic Payment Service Registry (MV_EPS_Registry) is defined for the

Electronic Wallet Service according to the definition of this service in the Use Case

description. Having the characteristics of the Registry entity defined in Error!

Reference source not found.. The MV_EPS_Registry is defined as a super class of

it. See Error! Reference source not found. for more details on the registry

features.

Data models, object models and

ontology definition

 - 52 -

www.moveus-project.eu

Figure 39 Coupons & Awards

3.5.2.5 Coordination with User Management functional block

As described in section 3.1 the definitions of the Incentives-related Data Model are

fully harmonized with those of the User Management and therefore the feature

types defined in the present functional module have to be understood and

completed with those of Functional block 1.

3.6 Functional block CF/EC Estimation

Energy Consumption and Carbon Footprint issues will be supported by an specific

algorithm to be used by a computational engine in order to output ‘global’

Energy/CO2 computed values (per user, per routing, per means of transportation

etc.), based on input information concerning the Energy/CO2 label set and

information related to mobility options chosen by users in real time. The

«FeatureType»

MV_Adv ertisement

+ UrlOfDetailPage: string

+ UrlOfImage: string

+ Title: string

+ SubTitle: string

+ ShortDescription: string

+ LongDescription: string

«feature type»

MV_Award

+ AwardID: int

+ Name: string

+ Description: string

+ MonetaryValue: short

+ TimeValidity: TemporalValidity

+ GeographicValidity: MV_SpatialExtent

+ CurrentAvailabil ity: int

«feature type»

MV_Coupons

+ UrlOfDetailPage: string

+ UrlOfImage: string [0..1]

+ Title: string

+ SubTitle: string

+ ShortDescription: string [0..1]

+ LongDescription: string [0..1]

+ Conditions: string

+ Location: MV_SpatialExtent

+ TotalAvailabil ity: int

+ CurrentAvailabil ity: int

+ Availabil ityDetails: string [0..1]

+ FullPrice: short

+ Discount: real

+ TimeValidity: TemporalValidity

+ MainContact: string

«feature type»

MV_Incentiv ePaymentType

+ ID: int

+ AllowedCurrency: IncentiveCurrency

+ MonetaryTradeoff: short

+ TimeValidity: TemporalValidity [0..1]

«feature type»

MV_Incentiv e

+ ID: int

+ Name: string

+ Description: string [0..1]

+ IncentiveCurrency: MV_IncentiveCurrency

«feature type»

MV_Voucher

+ VoucherID: int

+ Name: string

+ Description: string

+ NameOfBenefit: string

+ DescriptionOfBenefit: string

+ TimeValidity: TemporalValidity

+ MonetaryValueOfBenefit: short

+ AmountToPay: short

«FeatureTyp...

MV_EPS_Registry

«FeatureType»

Registry::MV_Registry

+ Version: string

+ Description: string

+ References: URL

+availableFor 0..*

+payableWith 0..*

+awardedWith

0..*

+appliesTo 1..*

+availableFor 1..*

+payableWith 1..*

Data models, object models and

ontology definition

 - 53 -

www.moveus-project.eu

assessment methodology, methods and underlying data needs are currently under

definition in WP4.

3.6.1 Existing specifications

No existing parts of the In-Time/Co-Cities Data Model are then re-used. The energy

efficiency schema defined in WP4 will be supported by a specific and dedicated Data

Model which needs to be defined from scratch.

3.6.2 Extensions

Expected extensions of the common MoveUs data model are expected according to

the WP4 working progress.

In advance, some of the key concepts to be managed are outlined at the table

below.

Table 4 Energy Efficiency concepts

KPI Set of Key Performance Indicators related with energy efficiency and

carbon footprint in the transportation domain.

Described by:

 Description

 Calculation

 Relation to transportation modality

 Etc.

Energy

labels

Set of translations of energy efficiency values for users. Described by:

 Description

 Equivalence to user meaningful values, e.g. cost,

Energy

affecting

parameters

Set of parameters that are affected by KPIs in the different living labs.

Described by:

 Description

 KPIs related to this parameter

 Positive or negative effect for energy consumption and carbon

footprint

 Etc.

3.7 Functional block Feedback

MOVUS proposes a co-operative mobility concept, seen as the interconnection of

users, vehicles and infrastructure that enables a full sharing of information between

the different actors. Here, is a key issue the final user involvement. Specifically, the

Data models, object models and

ontology definition

 - 54 -

www.moveus-project.eu

feedback provided by users enables cities and transportation operators to adapt

their plans and offer in a more efficient way.

This feedback can be achieved in two different ways: passive, as automated

application process, or active, answering the own user questions related to the

quality of the own MoveUs Application information or the public transport

environment (e.g. feedback traffic and transportation related events and metrics).

3.7.1 Existing specifications

The existing Co-Cities Data model defines a package of feedback-related feature

types that are used in MoveUs.

Among the set of feedback services specified in Co-Cities, two domains are

specifically considered for MoveUs:

1. Journey Planning-related feedbacks

2. Traffic-related feedbacks

The super-class Feedback features the base feedback attributes. This includes a

Trust Level that can be used to differentiate (namely, assign different reliability

levels) the subject who formulated the feedback.

The sub-classes of Feedback define the specific data types of the feedback

information:

 Traffic feedback (new data about a traffic event): this is a class with an

attribute of type TrafficElement (see section 3.2).

 Traffic quality feedback (quality of information of a given traffic event): a set

of boolean values indicating if the specific information given about a traffic

event is correct or not.

 Journey Planning quality feedback (quality of information of a given

journey): a set of Boolean values indicating if the specific information given

for each leg of a journey is correct or not.

Data models, object models and

ontology definition

 - 55 -

www.moveus-project.eu

Figure 40 Feedback Model

3.7.2 Extensions

No extension is foreseen at the moment for the MoveUs Feedback functional block

compared to the Data features defined by the Co-Cities model.

3.8 Functional Block Registry

The registry of Metadata in MoveUs is used to direct the dynamic functionalities of

the City Services.

3.8.1 Existing specifications

The existing eMotion specifications are used in part for the service (API)

description.

3.8.2 Extensions

A simplified description profile for MoveUs is introduced.

An optional eMOTIONServiceDesc association links the registry to a more complete

WSDL-based service description.

«FeatureType»

Traffic::TrafficFeedback

+ Event: TrafficElement [0..*]

«FeatureType»

Traffic::TrafficQualityFeedback

+ additionalInfoCorrect: boolean [0..1]

+ trafficProblemCauseCorrect: boolean [0..1]

+ trafficInfoAvailable: boolean [0..1]

+ locationTrafficInfoCorrect: boolean [0..1]

+ roadworksInfoAvailable: boolean [0..1]

+ locationRoadworksCorrect: boolean [0..1]

+ affectedAreaRoadworksCorrect: boolean [0..1]

EMotionFeature

«FeatureType»

CoCitiesData::Feedback

+ applicationId: string [0..1]

+ comments: Feedback_Wildcard [0..*]

+ feedbackTime: DateTime

+ requestId: string [0..1]

+ trustLevel: Feedback_TrustLevel

«Enumeration»

CoCitiesData::

Feedback_TrustLev el

«enum»

 fullTrusted

 partialTrusted

 unTrusted

«DataType»

CoCitiesData::

Feedback_Wildcard

+ message: CharacterString

«FeatureType»

JourneyPlanning::JourneyPlanningQualityFeedback

+ tripSegmentStartPositionCorrect: boolean [0..1]

+ tripSegmentStartTimeCorrect: boolean [0..1]

+ tripSegmentStopTimeCorrect: boolean [0..1]

+ tripSegmentStopPositionCorrect: boolean [0..1]

+ etaCorrect: boolean [0..1]

+ destinationCorrect: boolean [0..1]

+ destinationLastMileCorrect: boolean [0..1]

Data models, object models and

ontology definition

 - 56 -

www.moveus-project.eu

MV_Registry is a superclass of local registry entities (MV_LocalRegistry) that have a

spatial extent (mandatory) and a temporal extent (non-mandatory).

The service descriptions (MoveUs-specific or eMotion-based) are associated to

MV_LocalRegistry.

The access criteria, necessary for differentiating the functionalities in the city

services are defined by considering the user type, defined as the union of the

different (sub-)user types and also the additional role ID (see 3.1.2 for more details

on these data types). With the implementation of the services a differentiation can

then be operated by considering generic (MV_UserType_MV) or specific (types “I”,

“T” or “D”) user profiles and by combining these with the additional User role if

necessary. The possibilities can be:

 Anonymous access (generic MoveUs user type and commonly agreed user

role)

 Access regulated by User Type only (using a common or known user role)

 Access regulated by User Role only (using the generic MoveUs user type)

 Combination of the previous two options

For each instance of access criteria a set of pair key-values is defined as a generic

method for activating, de-activating or differencing the functionalities and features

of the city services.

More information on the dynamic behaviour of the City Services can be found in

Deliverable D3.3.

Data models, object models and

ontology definition

 - 57 -

www.moveus-project.eu

Figure 41 Registry Model

Additionally, in order to ensure the application tailoring and customization

according to each city peculiarities (e.g. premium services as green route access

available for profiles tagged as “eco-friendly”), official languages and identity (e.g.

logo, app style). These characteristics will be coded by means of different key-

values.

optional

«feature type»

CommonTypes::MV_SpatialExtent

+ ID: int

+ LocationName: string

+ BBox: PointLocationReference [1..*]

+ Center: PointLocationReference

«FeatureType»

MV_Registry

+ Version: string

+ Description: string

+ References: URL

«FeatureType»

URIs

+ ID: string

+ Name: string

+ URI: string

- Description: int

«FeatureType»

KeysValues

+ key: string

+ value: string

«FeatureType»

accessCriteria

+ RoleID: int

+ UserType: UserTypesUnion

«feature type»

CommonTypes::

MV_TemporalExtent

+ StartDate: DateTime

+ EndDate: DateTime

«Service»

Serv ice Metadata::WSDL:Serv ice

+ description: InternationalString

+ id: URN

+ name: InternationalString

«FeatureType»

MV_LocalRegistry

«Enumeration»

Enumerations::

MV_UserTypes_I

«enum»

 i

 i.Type1

 i.Type2

 i.Type3

 i.Type5Ext

 i.Type5MOVEUS

 i.Type6Ext

 i.Type6MOVEUS

«Enumeratio...

Enumerations::

MV_USerTypes_T

«enum»

 t

 t.c

 t.cp

 t.odsp

 t.p

 t.ptp

 t.ptt

 t.st

 t.vd

«Enumeratio...

Enumerations::

MV_UserTypes_D

«enum»

 d

 d.e

 d.fvd

 d.hgvd

 d.odsd

 d.pr

 d.ptd

 d.tpd

«FeatureType»

UserTypesUnion

«Enumeration»

Enumerations::

MV_UserTypes_MV

«enum»

 mv

+eMOTIONServiceDesc

0..*+temporalValidity

0..1

+spatialValidity

+MV_serviceDesc

0..*

+keys

0..*

+accessRule 0..*

Data models, object models and

ontology definition

 - 58 -

www.moveus-project.eu

4 Conclusions

The outcomes of Task 3.1 remark the existing work in the field of mobility services

and in particular the availability of information models, which cover much of the

relevant static and dynamic elements identified as relevant. A significant portion of

the concepts needed for the storage of information and provision of services in

MoveUs project have been previously considered in the projects taken as reference.

However, a deep analysis of the use cases has determined necessary to define

adaptations and specific packages for the most innovative project goals, i.e.:

incentive management, energy efficiency, services customization and of course,

those aspects related to intelligent traffic management.

Furthermore, the parallel execution of the definition activities for the information

model (T3.1), system architecture (T3.2), service specifications (T3.3) and the

underlying algorithms (e.g. calculation of energy efficiency and trip planner) have

motivated an iterative working approach during this phase of the project.

While this document constitutes a mature version of the MoveUs data model,

integrating the specific and complex aspects before mentioned, an update will be

necessarily required by the end of the 1st project year (M12), to make sure that the

final T3.1 result is fully aligned with the final outcome of the two parallel tasks

mentioned (T3.2 and T3.3), which will be already available at that time.

Data models, object models and

ontology definition

 - 59 -

www.moveus-project.eu

5 References

[1] eMotion Project. http://www.emotion-project.eu/

[2] In-Time Project. http://www.emotion-project.eu/

[3] Co-cities Project. http://www.co-cities.eu/

[4] FRAME Framework. http://www.frame-online.net

[5] SAE J2735 DEDICATED SHORT RANGE COMMUNICATIONS (DSRC) (Rev 29)(2008)

[6] MoveUs deliverable D2.2 - Use cases, incentives-based model concept and common
specifications for the pilots

http://www.emotion-project.eu/
http://www.emotion-project.eu/
http://www.co-cities.eu/
http://www.frame-online.net/

	HISTORY
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Executive Summary
	1 MoveUs Overview
	2 Methodology
	3 MoveUs data model
	3.1 Functional block User Management
	3.1.1 Existing specifications
	3.1.2 Extensions
	3.1.2.1 User Type 4
	3.1.2.2 Organizations

	3.2 Functional block Traffic Management
	3.2.1 Existing specifications
	3.2.2 Extensions

	3.3 Public Transport Operation Management
	3.3.1 Existing specifications
	3.3.2 Extensions

	3.4 Functional Traveller Journey Assistance
	3.4.1 Existing specifications
	3.4.2 Extensions

	3.5 Functional block Incentive Management
	3.5.1 Existing specifications
	3.5.2 Extensions
	3.5.2.1 Incentive currencies
	3.5.2.2 Assignment of incentives
	3.5.2.3 Incentives and rules
	3.5.2.4 Coupons, awards, vouchers, electronic wallet service and advertisement
	3.5.2.5 Coordination with User Management functional block

	3.6 Functional block CF/EC Estimation
	3.6.1 Existing specifications
	3.6.2 Extensions

	3.7 Functional block Feedback
	3.7.1 Existing specifications
	3.7.2 Extensions

	3.8 Functional Block Registry
	3.8.1 Existing specifications
	3.8.2 Extensions

	4 Conclusions
	5 References

